October  2014, 7(5): 993-1023. doi: 10.3934/dcdss.2014.7.993

Convergent finite differences for 1D viscous isentropic flow in Eulerian coordinates

1. 

Department of Mathematical Sciences, Norwegian University of Science and Technology, Trondheim, 7491, Norway

Received  March 2013 Published  May 2014

We construct a new finite difference method for the flow of ideal viscous isentropic gas in one spatial dimension. For the continuity equation, the method is a standard upwind discretization. For the momentum equation, the method is an uncommon upwind discretization, where the moment and the velocity are solved on dual grids. Our main result is convergence of the method as discretization parameters go to zero. Convergence is proved by adapting the mathematical existence theory of Lions and Feireisl to the numerical setting.
Citation: Trygve K. Karper. Convergent finite differences for 1D viscous isentropic flow in Eulerian coordinates. Discrete and Continuous Dynamical Systems - S, 2014, 7 (5) : 993-1023. doi: 10.3934/dcdss.2014.7.993
References:
[1]

G.-Q. Chen, D. Hoff and K. Trivisa, Global solutions of the compressible Navier-Stokes equations with large discontinuous initial data, Comm. Partial Differential Equations, 25 (2000), 2233-2257. doi: 10.1080/03605300008821583.

[2]

R. Eymard, T. Gallouët, R. Herbin and J.-C. Latché, Convergence of the MAC scheme for the compressible Stokes equations, SIAM J. Numer. Anal., 48 (2010), 2218-2246. doi: 10.1137/090779863.

[3]

R. Eymard, T. Gallouët, R. Herbin and J.-C. Latché, A convergent finite element-finite volume scheme for the compressible Stokes problem. Part II: The isentropic case, Math. Comp., 79 (2010), 649-675. doi: 10.1090/S0025-5718-09-02310-2.

[4]

E. Feireisl., Dynamics of Viscous Compressible Fluids, Oxford Lecture Series in Mathematics and its Applications, 26, Oxford University Press, Oxford, 2004.

[5]

T. Gallouët, R. Herbin and J.-C. Latché, A convergent finite element-finite volume scheme for the compressible Stokes problem. Part I: The isothermal case, Math. Comp., 78 (2009), 1333-1352. doi: 10.1090/S0025-5718-09-02216-9.

[6]

T. Gallouët, L. Gestaldo, R. Herbin and J.-C. Latché, An unconditionally stable pressure correction scheme for the compressible barotropic Navier-Stokes equations, M2AN Math. Model. Numer. Anal., 42 (2008), 303-331. doi: 10.1051/m2an:2008005.

[7]

D. Hoff, Global existence for $1$D, compressible, isentropic Navier-Stokes equations with large initial data, Trans. Amer. Math. Soc., 303 (1987), 169-181. doi: 10.2307/2000785.

[8]

H. K. Jenssen and T. K. Karper, One-dimensional compressible flow with temperature dependent transport coefficients, SIAM J. Math. Anal., 42 (2010), 904-930. doi: 10.1137/090763135.

[9]

J. I. Kanel', A model system of equations for the one-dimensional motion of a gas, Differencial' nye Uravnenija., 4 (1968), 721-734.

[10]

K. Karlsen and T. K. Karper, A convergent nonconforming method for compressible flow, SIAM J. Numer. Anal., 48 (2010), 1847-1876. doi: 10.1137/09076310X.

[11]

K. Karlsen and T. K. Karper, Convergence of a mixed method for a semi-stationary compressible Stokes system, Math. Comp., 80 (2011), 1459-1498. doi: 10.1090/S0025-5718-2010-02446-9.

[12]

K. Karlsen and T. K. Karper, A convergent mixed method for the Stokes approximation of viscous compressible flow, IMA J. Numer. Anal., 32 (2011), 725-764. doi: 10.1093/imanum/drq048.

[13]

T. K. Karper, A convergent FEM-DG method for the compressible Navier-Stokes equations, Numer. Math., 125 (2013), 441-510. doi: 10.1007/s00211-013-0543-7.

[14]

A. V. Kazhikhov and V. V. Shelukhin, Unique global solution with respect to time of initial-boundary value problems for one-dimensional equations of a viscous gas, Prikl. Mat. Meh., 41 (1977), 282-291.

[15]

P.-L. Lions, Mathematical Topics in Fluid Mechanics. Vol. 2: Compressible Models, Oxford University Press, New York, 1998.

[16]

A. Novotný and I. Straškraba, Introduction to the Mathematical Theory of Compressible Flow, Oxford University Press, Oxford, 2004.

[17]

J. Serrin, Mathematical principles of classical fluid mechanics, in 1959 Handbuch der Physik (herausgegeben von S. Flügge), Bd. 8/1, Strömungsmechanik I (Mitherausgeber C. Truesdell), Springer-Verlag, Berlin-Göttingen-Heidelberg, 125-263.

[18]

R. Zarnowski and D. Hoff, A finite-difference scheme for the Navier-Stokes equations of one-dimensional, isentropic, compressible flow, SIAM J. Numer. Anal., 28 (1991), 78-112. doi: 10.1137/0728004.

[19]

J. Zhao and D. Hoff, A convergent finite-difference scheme for the Navier-Stokes equations of one-dimensional, nonisentropic, compressible flow, SIAM J. Numer. Anal., 31 (1994), 1289-1311. doi: 10.1137/0731067.

[20]

J. J. Zhao and D. Hoff, Convergence and error bound analysis of a finite-difference scheme for the one-dimensional Navier-Stokes equations, in Nonlinear Evolutionary Partial Differential Equations (Beijing, 1993), AMS/IP Stud. Adv. Math., 3, Amer. Math. Soc., Providence, RI, 1997, 625-631.

show all references

References:
[1]

G.-Q. Chen, D. Hoff and K. Trivisa, Global solutions of the compressible Navier-Stokes equations with large discontinuous initial data, Comm. Partial Differential Equations, 25 (2000), 2233-2257. doi: 10.1080/03605300008821583.

[2]

R. Eymard, T. Gallouët, R. Herbin and J.-C. Latché, Convergence of the MAC scheme for the compressible Stokes equations, SIAM J. Numer. Anal., 48 (2010), 2218-2246. doi: 10.1137/090779863.

[3]

R. Eymard, T. Gallouët, R. Herbin and J.-C. Latché, A convergent finite element-finite volume scheme for the compressible Stokes problem. Part II: The isentropic case, Math. Comp., 79 (2010), 649-675. doi: 10.1090/S0025-5718-09-02310-2.

[4]

E. Feireisl., Dynamics of Viscous Compressible Fluids, Oxford Lecture Series in Mathematics and its Applications, 26, Oxford University Press, Oxford, 2004.

[5]

T. Gallouët, R. Herbin and J.-C. Latché, A convergent finite element-finite volume scheme for the compressible Stokes problem. Part I: The isothermal case, Math. Comp., 78 (2009), 1333-1352. doi: 10.1090/S0025-5718-09-02216-9.

[6]

T. Gallouët, L. Gestaldo, R. Herbin and J.-C. Latché, An unconditionally stable pressure correction scheme for the compressible barotropic Navier-Stokes equations, M2AN Math. Model. Numer. Anal., 42 (2008), 303-331. doi: 10.1051/m2an:2008005.

[7]

D. Hoff, Global existence for $1$D, compressible, isentropic Navier-Stokes equations with large initial data, Trans. Amer. Math. Soc., 303 (1987), 169-181. doi: 10.2307/2000785.

[8]

H. K. Jenssen and T. K. Karper, One-dimensional compressible flow with temperature dependent transport coefficients, SIAM J. Math. Anal., 42 (2010), 904-930. doi: 10.1137/090763135.

[9]

J. I. Kanel', A model system of equations for the one-dimensional motion of a gas, Differencial' nye Uravnenija., 4 (1968), 721-734.

[10]

K. Karlsen and T. K. Karper, A convergent nonconforming method for compressible flow, SIAM J. Numer. Anal., 48 (2010), 1847-1876. doi: 10.1137/09076310X.

[11]

K. Karlsen and T. K. Karper, Convergence of a mixed method for a semi-stationary compressible Stokes system, Math. Comp., 80 (2011), 1459-1498. doi: 10.1090/S0025-5718-2010-02446-9.

[12]

K. Karlsen and T. K. Karper, A convergent mixed method for the Stokes approximation of viscous compressible flow, IMA J. Numer. Anal., 32 (2011), 725-764. doi: 10.1093/imanum/drq048.

[13]

T. K. Karper, A convergent FEM-DG method for the compressible Navier-Stokes equations, Numer. Math., 125 (2013), 441-510. doi: 10.1007/s00211-013-0543-7.

[14]

A. V. Kazhikhov and V. V. Shelukhin, Unique global solution with respect to time of initial-boundary value problems for one-dimensional equations of a viscous gas, Prikl. Mat. Meh., 41 (1977), 282-291.

[15]

P.-L. Lions, Mathematical Topics in Fluid Mechanics. Vol. 2: Compressible Models, Oxford University Press, New York, 1998.

[16]

A. Novotný and I. Straškraba, Introduction to the Mathematical Theory of Compressible Flow, Oxford University Press, Oxford, 2004.

[17]

J. Serrin, Mathematical principles of classical fluid mechanics, in 1959 Handbuch der Physik (herausgegeben von S. Flügge), Bd. 8/1, Strömungsmechanik I (Mitherausgeber C. Truesdell), Springer-Verlag, Berlin-Göttingen-Heidelberg, 125-263.

[18]

R. Zarnowski and D. Hoff, A finite-difference scheme for the Navier-Stokes equations of one-dimensional, isentropic, compressible flow, SIAM J. Numer. Anal., 28 (1991), 78-112. doi: 10.1137/0728004.

[19]

J. Zhao and D. Hoff, A convergent finite-difference scheme for the Navier-Stokes equations of one-dimensional, nonisentropic, compressible flow, SIAM J. Numer. Anal., 31 (1994), 1289-1311. doi: 10.1137/0731067.

[20]

J. J. Zhao and D. Hoff, Convergence and error bound analysis of a finite-difference scheme for the one-dimensional Navier-Stokes equations, in Nonlinear Evolutionary Partial Differential Equations (Beijing, 1993), AMS/IP Stud. Adv. Math., 3, Amer. Math. Soc., Providence, RI, 1997, 625-631.

[1]

Zhilei Liang. Convergence rate of solutions to the contact discontinuity for the compressible Navier-Stokes equations. Communications on Pure and Applied Analysis, 2013, 12 (5) : 1907-1926. doi: 10.3934/cpaa.2013.12.1907

[2]

Murat Uzunca, Ayşe Sarıaydın-Filibelioǧlu. Adaptive discontinuous galerkin finite elements for advective Allen-Cahn equation. Numerical Algebra, Control and Optimization, 2021, 11 (2) : 269-281. doi: 10.3934/naco.2020025

[3]

Boris Haspot, Ewelina Zatorska. From the highly compressible Navier-Stokes equations to the porous medium equation -- rate of convergence. Discrete and Continuous Dynamical Systems, 2016, 36 (6) : 3107-3123. doi: 10.3934/dcds.2016.36.3107

[4]

Min Liang, Yaobin Ou. Convergence rate of fully compressible Navier-Stokes equations in three-dimensional bounded domains. Discrete and Continuous Dynamical Systems - B, 2022  doi: 10.3934/dcdsb.2022142

[5]

Ling-Bing He, Li Xu. On the compressible Navier-Stokes equations in the whole space: From non-isentropic flow to isentropic flow. Discrete and Continuous Dynamical Systems, 2021, 41 (7) : 3489-3530. doi: 10.3934/dcds.2021005

[6]

Matúš Tibenský, Angela Handlovičová. Convergence analysis of the discrete duality finite volume scheme for the regularised Heston model. Discrete and Continuous Dynamical Systems - S, 2021, 14 (3) : 1181-1195. doi: 10.3934/dcdss.2020226

[7]

Boris Andreianov, Mostafa Bendahmane, Kenneth H. Karlsen, Charles Pierre. Convergence of discrete duality finite volume schemes for the cardiac bidomain model. Networks and Heterogeneous Media, 2011, 6 (2) : 195-240. doi: 10.3934/nhm.2011.6.195

[8]

Matthew Paddick. The strong inviscid limit of the isentropic compressible Navier-Stokes equations with Navier boundary conditions. Discrete and Continuous Dynamical Systems, 2016, 36 (5) : 2673-2709. doi: 10.3934/dcds.2016.36.2673

[9]

Bin Wang, Lin Mu. Viscosity robust weak Galerkin finite element methods for Stokes problems. Electronic Research Archive, 2021, 29 (1) : 1881-1895. doi: 10.3934/era.2020096

[10]

Roberta Bianchini, Roberto Natalini. Convergence of a vector-BGK approximation for the incompressible Navier-Stokes equations. Kinetic and Related Models, 2019, 12 (1) : 133-158. doi: 10.3934/krm.2019006

[11]

Caterina Calgaro, Meriem Ezzoug, Ezzeddine Zahrouni. Stability and convergence of an hybrid finite volume-finite element method for a multiphasic incompressible fluid model. Communications on Pure and Applied Analysis, 2018, 17 (2) : 429-448. doi: 10.3934/cpaa.2018024

[12]

Grzegorz Karch, Maria E. Schonbek, Tomas P. Schonbek. Singularities of certain finite energy solutions to the Navier-Stokes system. Discrete and Continuous Dynamical Systems, 2020, 40 (1) : 189-206. doi: 10.3934/dcds.2020008

[13]

Pavel I. Plotnikov, Jan Sokolowski. Optimal shape control of airfoil in compressible gas flow governed by Navier-Stokes equations. Evolution Equations and Control Theory, 2013, 2 (3) : 495-516. doi: 10.3934/eect.2013.2.495

[14]

Pavel I. Plotnikov, Jan Sokolowski. Compressible Navier-Stokes equations. Conference Publications, 2009, 2009 (Special) : 602-611. doi: 10.3934/proc.2009.2009.602

[15]

Tadahisa Funaki, Yueyuan Gao, Danielle Hilhorst. Convergence of a finite volume scheme for a stochastic conservation law involving a $Q$-brownian motion. Discrete and Continuous Dynamical Systems - B, 2018, 23 (4) : 1459-1502. doi: 10.3934/dcdsb.2018159

[16]

Mostafa Bendahmane, Mauricio Sepúlveda. Convergence of a finite volume scheme for nonlocal reaction-diffusion systems modelling an epidemic disease. Discrete and Continuous Dynamical Systems - B, 2009, 11 (4) : 823-853. doi: 10.3934/dcdsb.2009.11.823

[17]

Rajesh Kumar, Jitendra Kumar, Gerald Warnecke. Convergence analysis of a finite volume scheme for solving non-linear aggregation-breakage population balance equations. Kinetic and Related Models, 2014, 7 (4) : 713-737. doi: 10.3934/krm.2014.7.713

[18]

Yanmin Mu. Convergence of the compressible isentropic magnetohydrodynamic equations to the incompressible magnetohydrodynamic equations in critical spaces. Kinetic and Related Models, 2014, 7 (4) : 739-753. doi: 10.3934/krm.2014.7.739

[19]

Tianliang Hou, Yanping Chen. Superconvergence for elliptic optimal control problems discretized by RT1 mixed finite elements and linear discontinuous elements. Journal of Industrial and Management Optimization, 2013, 9 (3) : 631-642. doi: 10.3934/jimo.2013.9.631

[20]

Haibo Cui, Zhensheng Gao, Haiyan Yin, Peixing Zhang. Stationary waves to the two-fluid non-isentropic Navier-Stokes-Poisson system in a half line: Existence, stability and convergence rate. Discrete and Continuous Dynamical Systems, 2016, 36 (9) : 4839-4870. doi: 10.3934/dcds.2016009

2021 Impact Factor: 1.865

Metrics

  • PDF downloads (65)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]