\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Stationary solutions for some shadow system of the Keller-Segel model with logistic growth

Abstract Related Papers Cited by
  • From a viewpoint of the pattern formation, the Keller-Segel system with the growth term is studied. This model exhibited various static and dynamic patterns caused by the combination of three effects, chemotaxis, diffusion and growth. In a special case when chemotaxis effect is very strong, some numerical experiment in [1],[22] showed static and chaotic patterns. In this paper we consider the logistic source for the growth and a shadow system in the limiting case that a diffusion coefficient and chemotactic intensity grow to infinity. We obtain the global structure of stationary solutions of the shadow system in the one-dimensional case. Our proof is based on the bifurcation, singular perturbation and a level set analysis. Moreover, we show some numerical results on the global bifurcation branch of solutions by using AUTO package.
    Mathematics Subject Classification: Primary: 35B32, 37G40, 35K57; Secondary: 35B36.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    M. Aida, T. Tsujikawa, M. Efendiev, A. Yagi and M. Mimura, Lower estimate of the attractor dimension for a chemotaxis growth system, J. London Math. Soc., 74 (2006), 453-474.doi: 10.1112/S0024610706023015.

    [2]

    W. Alt and D. A. Lauffenburger, Transient behavior of a chemotaxis system modelling certain types of tissue inflammation, J. Math. Biol., 24 (1987), 691-722.doi: 10.1007/BF00275511.

    [3]

    P. Biler, Local and global solvability of some parabolic system modelling chemotaxis, Adv. Mathe. Sci. and Appl., 8 (1998), 715-743.

    [4]

    N. Chafee and E. F. Infante, A bifurcation problem for a nonlinear partial differential equation of parabolic type, Appl. Anal., 4 (1974), 17-37.doi: 10.1080/00036817408839081.

    [5]

    E. J. Doedel, R. C. Paffenroth, A. R. Champneys, T. F. Fairgrieve, Y. A. Kuznetsov, B. E. Oldeman, B. Sandstede and X. Wang, AUTO 2000, Continuation and bifurcation software for ordinary differential equations.

    [6]

    S.-I. Ei, H. Izuhara and M. Mimura, Spatio-temporal oscillations in the Keller-Segel system with logistic growth, Physica D, 277 (2014), 1-21.doi: 10.1016/j.physd.2014.03.002.

    [7]

    C. Gai, Q. Wang and J. Yan, Qualitative analysis of stationary Keller-Segel chemotaxis models with logistic growth, preprint, arXiv:1312.0258.

    [8]

    D. D. Hai and A. Yagi, Numerical computations and pattern formation for chemotaxis-growth model, Sci. Math. Jpn, 70 (2009), 205-211.

    [9]

    Y. Kabeya and W.-M. Ni, Stationary Keller-Segel model with the linear sensitivity, RIMS Kokyuroku, 1025 (1998), 44-65.

    [10]

    E. F. Keller and L. A. Segel, Initiation of slime mold aggregation viewed as an instability, J. Theor. Biol., 26 (1970), 399-415.doi: 10.1016/0022-5193(70)90092-5.

    [11]

    N. Kurata, K. Kuto, K. Osaki, T. Tsujikawa and T. Sakurai, Bifurcation phenomena of pattern solution to Mimura-Tsujikawa model in one dimension, Math. Sci. Appl., 29 (2008), 265-278.

    [12]

    K. Kuto, K. Osaki, T. Sakurai and T. Tsujikawa, Spatial pattern in a chemotaxis-diffusion-growth model, Physica D, 241 (2012), 1629-1639.doi: 10.1016/j.physd.2012.06.009.

    [13]

    K. Kuto and T. Tsujikawa, Stationary patterns for an adsorbate-induced phase transition model: II. Shadow system, Nonlinearity, 26 (2013), 1313-1343.doi: 10.1088/0951-7715/26/5/1313.

    [14]

    K. Kuto and T. Tsujikawa, Bifurcation structure of steady-states for bistable equations with nonlocal constraint, Discrete Continuous Dynam. Systems, Supplement volume, (2013), 455-464.

    [15]

    K. Kuto and T. Tsujikawa, Limiting structure of steady-states to the Lotka-Volterra competition model with large diffusion and advection, J. Differential Equations, 258 (2015), 1801-1858.doi: 10.1016/j.jde.2014.11.016.

    [16]

    K. Kuto and T. Tsujikawa, Bifurcation structure of steady-states for generalized Allen-Cahn equations with nonlocal constraint, preprint.

    [17]

    D. A. Lauffenburger and C. R. Kennedy, Localized bacterial infection in a chemotaxis-diffusion-growth model, J. Math. Biol., 16 (1983), 141-163.

    [18]

    C.-S. Lin, W.-N. Ni and I. Takagi, Large amplitude stationary solutions to a chemotaxis system, J. Differential Equations, 72 (1988), 1-27.doi: 10.1016/0022-0396(88)90147-7.

    [19]

    P. K. Maini, M. R. Myerscough, K. H. Winters and J. D. Murray, Bifurcating spatially heterogeneous solutions in a chemotaxis model for biological pattern formation, Bull. Math. Biol., 53 (1991), 701-719.

    [20]

    M. Mimura and T. Tsujikawa, Aggregating pattern dynamics in a chemotaxis model including growth, Physica A, 230 (1996), 499-543.doi: 10.1016/0378-4371(96)00051-9.

    [21]

    K. Osaki, T. Tsujikawa, A. Yagi and M. Mimura, Exponential attractor for a chemotaxis-growth system of equations, Nonlinear Analysis, Theory, Methods and Applications, 51 (2002), 119-144.doi: 10.1016/S0362-546X(01)00815-X.

    [22]

    K. J. Painter and T. Hillen, Spatio-temporal chaos in a chemotaxis model, Physica D, 240 (2011), 363-375.doi: 10.1016/j.physd.2010.09.011.

    [23]

    R. Schaaf, Global behaviour of solution branches for some Neumann problems depending on one or several parameters, J. Reine Angew. Math., 364 (1984), 1-31.doi: 10.1515/crll.1984.346.1.

    [24]

    R. Schaaf, Global Solution Branches of Two-Point Boundary Value Problems, Lecture Notes in Mathematics, 1458, Springer-Verlag, Berlin, 1990.

    [25]

    T. Senba and T. Suzuki, Some structures of the solution set for a stationary system of chemotaxis, Adv. Math. Sci. Appl., 10 (2000), 191-224.

    [26]

    J. Shi, Semilinear Neumann boundary value problems on a rectangle, Trans. Amer. Math. Soc., 354 (2002), 3117-3154.doi: 10.1090/S0002-9947-02-03007-6.

    [27]

    J. I. Tello and M. Winkler, A chemotaxis system with logistic source, Comm. Partial Differential Equations, 32 (2007), 849-877.doi: 10.1080/03605300701319003.

    [28]

    T. Tsujikawa, Global structure of the stationary solutions for the limiting system of a chemotaxis-growth model, to appear in RIMS Kokyuroku, 2014.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(122) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return