-
Previous Article
Periodic orbits for a generalized Friedmann-Robertson-Walker Hamiltonian system in dimension $6$
- DCDS-S Home
- This Issue
-
Next Article
Dynamic systems based on preference graph and distance
Dynamics of shallow water waves with Gardner-Kadomtsev-Petviashvili equation
1. | Computer Engineering Technique Department Al-Rafidain, University College, Baghdad, Iraq |
2. | Department of Engineering Sciences, Faculty of Technology and Engineering East of Guilan, University of Guilan, P.C. 44891-63157, Rudsar-Vajargah, Iran |
3. | Department of Mathematical Sciences, Delaware State University, Dover, DE 19901-2277, United States |
References:
[1] |
Communications in Nonlinear Science and Numerical Simulation, 14 (2009), 734-748.
doi: 10.1016/j.cnsns.2007.12.004. |
[2] |
Romanian Journal of Physics, 58 (2013), 729-748. |
[3] |
Advanced Studies in Theoretical Physics, 2 (2008), 787-794. |
[4] |
Applied Mathematics and Computation, 214 (2009), 645-647.
doi: 10.1016/j.amc.2009.04.001. |
[5] |
Applied Mathematics and Computation, 217 (2010), 1771-1773.
doi: 10.1016/j.amc.2009.09.042. |
[6] |
Journal of Applied Fluid Mechanics, 7 (2014), 603-609. Google Scholar |
[7] |
Romaninan Reports in Physics, 65 (2013), 27-62. Google Scholar |
[8] |
Journal of Modern Optics, 60 (2013), 1627-1636.
doi: 10.1080/09500340.2013.850777. |
[9] |
European Physical Journal, Plus, 128 (2013), p140. Google Scholar |
[10] |
Nonlinear Dynamics, 66 (2011), 497-507.
doi: 10.1007/s11071-010-9928-7. |
[11] |
Journal of Applied Fluid Mechanics, 6 (2013), 339-350. Google Scholar |
[12] |
Journal of Applied Fluid Mechanics, 7 (2014), 711-718. Google Scholar |
[13] |
Computational and Applied Mathematics, 33 (2014), 831-839.
doi: 10.1007/s40314-013-0098-3. |
[14] |
Pramana, 81 (2013), 225-236. Google Scholar |
[15] |
Pramana, 81 (2013), 225-236.
doi: 10.1007/s12043-013-0565-9. |
[16] |
Journal of Applied Fluid Mechanics, 8 (2015), 207-212. Google Scholar |
[17] |
Journal of Applied Fluid Mechanics, 7 (2014), 357-366. Google Scholar |
[18] |
World Applied Science Journal, 13 (2011), 662-666. Google Scholar |
[19] |
Communications in Nonlinear Science and Numerical Simulations, 17 (2012), 1493-1499.
doi: 10.1016/j.cnsns.2011.09.023. |
[20] |
Applied Mathematical Modelling, 35 (2011), 3991-3997.
doi: 10.1016/j.apm.2011.02.001. |
[21] |
Ain Shams Engineering Journal, 4 (2013), 493-499.
doi: 10.1016/j.asej.2012.10.002. |
[22] |
Journal of King Saud University- Science, 26 (2014), 75-78.
doi: 10.1016/j.jksus.2013.07.001. |
[23] |
Communications in Nonlinear Science and Numerical Simulations, 14 (2009), 1810-1815.
doi: 10.1016/j.cnsns.2008.07.009. |
[24] |
Applied Mathematics and Computation, 207 (2009), 279-282.
doi: 10.1016/j.amc.2008.10.031. |
[25] |
Canadian Journal of Physics, 89 (2011), 979-984.
doi: 10.1139/p11-083. |
[26] |
Physics Letters A, 372 (2008), 417-423.
doi: 10.1016/j.physleta.2007.07.051. |
[27] |
Applied Mathematics and Computation, 204 (2008), 162-169.
doi: 10.1016/j.amc.2008.06.011. |
[28] |
Nonlinear Analysis: Modelling and Control, 17 (2012), 369-378. |
[29] |
Applied Mathematics and Computation, 212 (2009), 1-13.
doi: 10.1016/j.amc.2009.02.009. |
[30] |
International Journal of Computer Mathematics, 87 (2010), 1716-1725.
doi: 10.1080/00207160802450166. |
show all references
References:
[1] |
Communications in Nonlinear Science and Numerical Simulation, 14 (2009), 734-748.
doi: 10.1016/j.cnsns.2007.12.004. |
[2] |
Romanian Journal of Physics, 58 (2013), 729-748. |
[3] |
Advanced Studies in Theoretical Physics, 2 (2008), 787-794. |
[4] |
Applied Mathematics and Computation, 214 (2009), 645-647.
doi: 10.1016/j.amc.2009.04.001. |
[5] |
Applied Mathematics and Computation, 217 (2010), 1771-1773.
doi: 10.1016/j.amc.2009.09.042. |
[6] |
Journal of Applied Fluid Mechanics, 7 (2014), 603-609. Google Scholar |
[7] |
Romaninan Reports in Physics, 65 (2013), 27-62. Google Scholar |
[8] |
Journal of Modern Optics, 60 (2013), 1627-1636.
doi: 10.1080/09500340.2013.850777. |
[9] |
European Physical Journal, Plus, 128 (2013), p140. Google Scholar |
[10] |
Nonlinear Dynamics, 66 (2011), 497-507.
doi: 10.1007/s11071-010-9928-7. |
[11] |
Journal of Applied Fluid Mechanics, 6 (2013), 339-350. Google Scholar |
[12] |
Journal of Applied Fluid Mechanics, 7 (2014), 711-718. Google Scholar |
[13] |
Computational and Applied Mathematics, 33 (2014), 831-839.
doi: 10.1007/s40314-013-0098-3. |
[14] |
Pramana, 81 (2013), 225-236. Google Scholar |
[15] |
Pramana, 81 (2013), 225-236.
doi: 10.1007/s12043-013-0565-9. |
[16] |
Journal of Applied Fluid Mechanics, 8 (2015), 207-212. Google Scholar |
[17] |
Journal of Applied Fluid Mechanics, 7 (2014), 357-366. Google Scholar |
[18] |
World Applied Science Journal, 13 (2011), 662-666. Google Scholar |
[19] |
Communications in Nonlinear Science and Numerical Simulations, 17 (2012), 1493-1499.
doi: 10.1016/j.cnsns.2011.09.023. |
[20] |
Applied Mathematical Modelling, 35 (2011), 3991-3997.
doi: 10.1016/j.apm.2011.02.001. |
[21] |
Ain Shams Engineering Journal, 4 (2013), 493-499.
doi: 10.1016/j.asej.2012.10.002. |
[22] |
Journal of King Saud University- Science, 26 (2014), 75-78.
doi: 10.1016/j.jksus.2013.07.001. |
[23] |
Communications in Nonlinear Science and Numerical Simulations, 14 (2009), 1810-1815.
doi: 10.1016/j.cnsns.2008.07.009. |
[24] |
Applied Mathematics and Computation, 207 (2009), 279-282.
doi: 10.1016/j.amc.2008.10.031. |
[25] |
Canadian Journal of Physics, 89 (2011), 979-984.
doi: 10.1139/p11-083. |
[26] |
Physics Letters A, 372 (2008), 417-423.
doi: 10.1016/j.physleta.2007.07.051. |
[27] |
Applied Mathematics and Computation, 204 (2008), 162-169.
doi: 10.1016/j.amc.2008.06.011. |
[28] |
Nonlinear Analysis: Modelling and Control, 17 (2012), 369-378. |
[29] |
Applied Mathematics and Computation, 212 (2009), 1-13.
doi: 10.1016/j.amc.2009.02.009. |
[30] |
International Journal of Computer Mathematics, 87 (2010), 1716-1725.
doi: 10.1080/00207160802450166. |
[1] |
Yuanqing Xu, Xiaoxiao Zheng, Jie Xin. New explicit and exact traveling wave solutions of (3+1)-dimensional KP equation. Mathematical Foundations of Computing, 2021 doi: 10.3934/mfc.2021006 |
[2] |
Sel Ly, Nicolas Privault. Stochastic ordering by g-expectations. Probability, Uncertainty and Quantitative Risk, 2021, 6 (1) : 61-98. doi: 10.3934/puqr.2021004 |
[3] |
Mingshang Hu, Shige Peng. G-Lévy processes under sublinear expectations. Probability, Uncertainty and Quantitative Risk, 2021, 6 (1) : 1-22. doi: 10.3934/puqr.2021001 |
[4] |
Guo-Bao Zhang, Ruyun Ma, Xue-Shi Li. Traveling waves of a Lotka-Volterra strong competition system with nonlocal dispersal. Discrete & Continuous Dynamical Systems - B, 2018, 23 (2) : 587-608. doi: 10.3934/dcdsb.2018035 |
[5] |
Chiun-Chuan Chen, Hung-Yu Chien, Chih-Chiang Huang. A variational approach to three-phase traveling waves for a gradient system. Discrete & Continuous Dynamical Systems, 2021 doi: 10.3934/dcds.2021055 |
[6] |
Wensheng Yin, Jinde Cao, Guoqiang Zheng. Further results on stabilization of stochastic differential equations with delayed feedback control under $ G $-expectation framework. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021072 |
[7] |
Omer Gursoy, Kamal Adli Mehr, Nail Akar. Steady-state and first passage time distributions for waiting times in the $ MAP/M/s+G $ queueing model with generally distributed patience times. Journal of Industrial & Management Optimization, 2021 doi: 10.3934/jimo.2021078 |
[8] |
Andrew Comech, Elena Kopylova. Orbital stability and spectral properties of solitary waves of Klein–Gordon equation with concentrated nonlinearity. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021063 |
[9] |
Yohei Yamazaki. Center stable manifolds around line solitary waves of the Zakharov–Kuznetsov equation with critical speed. Discrete & Continuous Dynamical Systems, 2021, 41 (8) : 3579-3614. doi: 10.3934/dcds.2021008 |
[10] |
Woocheol Choi, Youngwoo Koh. On the splitting method for the nonlinear Schrödinger equation with initial data in $ H^1 $. Discrete & Continuous Dynamical Systems, 2021, 41 (8) : 3837-3867. doi: 10.3934/dcds.2021019 |
[11] |
Amanda E. Diegel. A C0 interior penalty method for the Cahn-Hilliard equation. Electronic Research Archive, , () : -. doi: 10.3934/era.2021030 |
[12] |
Haili Qiao, Aijie Cheng. A fast high order method for time fractional diffusion equation with non-smooth data. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021073 |
[13] |
Dmitry Treschev. Travelling waves in FPU lattices. Discrete & Continuous Dynamical Systems, 2004, 11 (4) : 867-880. doi: 10.3934/dcds.2004.11.867 |
[14] |
Chin-Chin Wu. Existence of traveling wavefront for discrete bistable competition model. Discrete & Continuous Dynamical Systems - B, 2011, 16 (3) : 973-984. doi: 10.3934/dcdsb.2011.16.973 |
[15] |
Jian Yang, Bendong Lou. Traveling wave solutions of competitive models with free boundaries. Discrete & Continuous Dynamical Systems - B, 2014, 19 (3) : 817-826. doi: 10.3934/dcdsb.2014.19.817 |
[16] |
Wei-Jian Bo, Guo Lin, Shigui Ruan. Traveling wave solutions for time periodic reaction-diffusion systems. Discrete & Continuous Dynamical Systems, 2018, 38 (9) : 4329-4351. doi: 10.3934/dcds.2018189 |
[17] |
Yu Yang, Jinling Zhou, Cheng-Hsiung Hsu. Critical traveling wave solutions for a vaccination model with general incidence. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021087 |
[18] |
Pascal Noble, Sebastien Travadel. Non-persistence of roll-waves under viscous perturbations. Discrete & Continuous Dynamical Systems - B, 2001, 1 (1) : 61-70. doi: 10.3934/dcdsb.2001.1.61 |
[19] |
Fioralba Cakoni, Pu-Zhao Kow, Jenn-Nan Wang. The interior transmission eigenvalue problem for elastic waves in media with obstacles. Inverse Problems & Imaging, 2021, 15 (3) : 445-474. doi: 10.3934/ipi.2020075 |
[20] |
Yinsong Bai, Lin He, Huijiang Zhao. Nonlinear stability of rarefaction waves for a hyperbolic system with Cattaneo's law. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021049 |
2019 Impact Factor: 1.233
Tools
Metrics
Other articles
by authors
[Back to Top]