\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Dynamics of shallow water waves with Gardner-Kadomtsev-Petviashvili equation

Abstract Related Papers Cited by
  • This paper obtains soliton and other solutions to the Gardner-Kadomtsev-Petviashvili equation that models shallow water wave equation in (1+2)-dimensions. There are three types of integration architectures that will be employed in order to obtain several forms of solution to this model. These are traveling wave hypothesis, improved $G^{\prime}/G$-expansion method and finally the tanh-coth hypothesis. The constraint conditions that are needed, for these solutions to exist, are also reported.
    Mathematics Subject Classification: Primary: 58F15, 58F17; Secondary: 53C35.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    M. Antonova and A. Biswas, Adiabatic parameter dynamics of perturbed solitons, Communications in Nonlinear Science and Numerical Simulation, 14 (2009), 734-748.doi: 10.1016/j.cnsns.2007.12.004.

    [2]

    A. H. Bhrawy, M. A. Abdelkawy, S. Kumar and A. Biswas, Solitons and other solutions to Kadomtsev-Petviashvili equation of B-type, Romanian Journal of Physics, 58 (2013), 729-748.

    [3]

    A. Biswas and E. Zerrad, Soliton perturbation theory for the Gardner equation, Advanced Studies in Theoretical Physics, 2 (2008), 787-794.

    [4]

    A. Biswas and A. Ranasinghe, 1-soliton solution of Kadomtsev-Petviashvili equation with power law nonlinearity, Applied Mathematics and Computation, 214 (2009), 645-647.doi: 10.1016/j.amc.2009.04.001.

    [5]

    A. Biswas and A. Ranasinghe, Topological 1-soliton solution of Kadomtsev-Petviashvili equation with power law nonlinearity, Applied Mathematics and Computation, 217 (2010), 1771-1773.doi: 10.1016/j.amc.2009.09.042.

    [6]

    R. Choudhury and S. K. Das, Viscelastic MHD free convective flow through porous media in presence of radiation and chemical reaction with heat and mass transfer, Journal of Applied Fluid Mechanics, 7 (2014), 603-609.

    [7]

    G. Ebadi, N. Y. Fard, A. H. Bhrawy, S. Kumar, H. Triki, A. Yildirim and A. Biswas, Solitons and other solutions to (3+1)-dimensional extended Kadomtsev-Petviashvili equation with power law nonlinearity, Romaninan Reports in Physics, 65 (2013), 27-62.

    [8]

    M. Eslami, M. Mirzazadeh and A. Biswas, Soliton solutions of the resonant nonlinear Schrodinger's equation in optical fibers with time-dependent coefficients by simplest equation approach, Journal of Modern Optics, 60 (2013), 1627-1636.doi: 10.1080/09500340.2013.850777.

    [9]

    M. Eslami and M. Mirzazadeh, Topological 1-soliton solution of nonlinear Schrodinger equation with dual-power law nonlinearity in nonlinear optical fibers, European Physical Journal, Plus, 128 (2013), p140.

    [10]

    E. V. Krishnan, H. Triki, M. Labidi and A. Biswas, A study of shallow water waves with Gardner's equation, Nonlinear Dynamics, 66 (2011), 497-507.doi: 10.1007/s11071-010-9928-7.

    [11]

    S. Kundu and K. Ghoshal, An explicit model for concentration distribution using biquadratic log-wake law in an open channel flow, Journal of Applied Fluid Mechanics, 6 (2013), 339-350.

    [12]

    Z. G. Makukula and S. S. Motsa, Spectral homotopy analysis method for PDEs that model the unsteady Von Karma swirling flow, Journal of Applied Fluid Mechanics, 7 (2014), 711-718.

    [13]

    M. Mirzazadeh, M. Eslami and A. Biswas, Soliton solutions of the generalized Klein-Gordon equation by using ${G'}/G$-expansion method, Computational and Applied Mathematics, 33 (2014), 831-839.doi: 10.1007/s40314-013-0098-3.

    [14]

    M. Mirzazadeh and M. Eslami, Exact solutions for nonlinear variants of Kadomtsev-Petviashvili (n, n) equation using functional variable method, Pramana, 81 (2013), 225-236.

    [15]

    A. Nazarzadeh, M. Eslami and M. Mirzazadeh, Exact solutions of some nonlinear partial differential equations using functional variable method, Pramana, 81 (2013), 225-236.doi: 10.1007/s12043-013-0565-9.

    [16]

    D. Pal and S. Chatterjee, Effects of radiation on Darcey-Forchheimer convective flow over a stretching sheet in a micropolar fluid with a non-uniform heat source/sink, Journal of Applied Fluid Mechanics, 8 (2015), 207-212.

    [17]

    P. Ram and V. Kumar, Rotationally symmetric ferrofluid flow and heat transfer in porous medium with variable viscosity and viscous dissipation, Journal of Applied Fluid Mechanics, 7 (2014), 357-366.

    [18]

    S. M. Shafiof, Z. Bagheri and Sousaraei, New solutions for positive and negative Gardner-KP equations, World Applied Science Journal, 13 (2011), 662-666.

    [19]

    N. Taghizadeh and M. Mirzazadeh, The simplest equation method to study perturbed nonlinear Schrodinger's equation with Kerr law nonlinearity, Communications in Nonlinear Science and Numerical Simulations, 17 (2012), 1493-1499.doi: 10.1016/j.cnsns.2011.09.023.

    [20]

    N. Taghizadeh, M. Mirzazadeh and F. Farahrooz, Exact soliton solutions of the modified KdV-KP equation and the Burgers-KP equation by using the first integral method, Applied Mathematical Modelling, 35 (2011), 3991-3997.doi: 10.1016/j.apm.2011.02.001.

    [21]

    N. Taghizadeh, M. Mirzazadeh and A. Samiei Paghaleh, Exact solutions of some nonlinear evolution equations via the first integral method, Ain Shams Engineering Journal, 4 (2013), 493-499.doi: 10.1016/j.asej.2012.10.002.

    [22]

    W. M. Taha, M. S. M. Noorani and I. Hashim, New exact solutions of sixth-order thin-film equation, Journal of King Saud University- Science, 26 (2014), 75-78.doi: 10.1016/j.jksus.2013.07.001.

    [23]

    F. Tascan, A. Bekir and M. Koparan, Travelling wave solutions of nonlinear evolutions by using the first integral method, Communications in Nonlinear Science and Numerical Simulations, 14 (2009), 1810-1815.doi: 10.1016/j.cnsns.2008.07.009.

    [24]

    F. Tascan and A. Bekir, Travelling wave solutions of the Cahn-Allen equation by using first integral method, Applied Mathematics and Computation, 207 (2009), 279-282.doi: 10.1016/j.amc.2008.10.031.

    [25]

    H. Triki, B. J. M. Sturdevant, T. Hayat, O. M. Aldossary and A. Biswas, Shock wave solutions of the variants of Kadomtsev-Petviashvili equation, Canadian Journal of Physics, 89 (2011), 979-984.doi: 10.1139/p11-083.

    [26]

    M. L. Wang, X. Z. Li and J. L. Zhang, The ${G'}/G$-expansion method and travelling wave solutions of nonlinear evolution equations in mathematical physics, Physics Letters A, 372 (2008), 417-423.doi: 10.1016/j.physleta.2007.07.051.

    [27]

    A. M. Wazwaz, Solitons and singular solutions for the Gardner-KP equation, Applied Mathematics and Computation, 204 (2008), 162-169.doi: 10.1016/j.amc.2008.06.011.

    [28]

    A. Yildirim, A. Samiei Paghaleh, M. Mirzazadeh, H. Moosaei and A. Biswas, New exact travelling wave solutions for DS-I and DS-II equations, Nonlinear Analysis: Modelling and Control, 17 (2012), 369-378.

    [29]

    E. Zayed and K. A. Gepreel, Some applications of the ${G'}/G$-expansion method to non-linear partial differential equations, Applied Mathematics and Computation, 212 (2009), 1-13.doi: 10.1016/j.amc.2009.02.009.

    [30]

    J. Zhang, F. Jiang and X. Zhao, An improved ${G'}/G$-expansion method for solving nonlinear evolution equations, International Journal of Computer Mathematics, 87 (2010), 1716-1725.doi: 10.1080/00207160802450166.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(403) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return