-
Previous Article
Application of support vector machine model in wind power prediction based on particle swarm optimization
- DCDS-S Home
- This Issue
-
Next Article
Research on the optimal initial shunt strategy of Jiuzhaigou based on the optimization model
Implementation of Mamdami fuzzy control on a multi-DOF two-wheel inverted pendulum robot
1. | NO.5 Zhongguancun South Street, Beijing Institute of Technology, Beijing 100081, China, China |
2. | NO.3 Xueyaun Road Fujian Univerity of Technology Xueyuan, Fuzhou 350118, Fujian, China |
References:
[1] |
A. Ahmadi, H. A. Rahim and R. A. Rahim, Optimization of a self-tuning PID type fuzzy controller and a PID controller for an inverted pendulum, Journal of Intelligent & Fuzzy Systems, 26 (2014), 1987-1999. |
[2] |
M. Alarfaj and G. Kantor, Centrifugal force compensation of a two-wheeled balancing robot, in 2010 11th International Conference on Control Automation Robotics & Vision (ICARCV 2010), Piscataway 2010, 2333-2338.
doi: 10.1109/ICARCV.2010.5707337. |
[3] |
M. Bruning, F. Heinemann, W. Schonewolf and J. Kruger, Design and implementation of a Kalman state estimator for balancing of uniaxial vehicles for goods transport, in 2013 IEEE International Conference on Mechatronics (ICM), 2013, 260-266.
doi: 10.1109/ICMECH.2013.6518546. |
[4] |
L. J. Butler and G. Bright, Control strategy for a mobile self-balancing materials handling platform, Journal of Engineering, Design and Technology, 8 (2010), 6-27.
doi: 10.1108/17260531011034628. |
[5] |
L. Chaoquan, G. Xueshan, H. Qiang, D. Fuquan, S. Jie and B. Yang, et al., A coaxial couple wheeled robot with T-S fuzzy equilibrium control, Industrial Robot, 38 (2011), 292-300. |
[6] |
C.-H. Chiu, Y.-W. Lin and C.-H. Lin, Real-time control of a wheeled inverted pendulum based on an intelligent model free controller, Mechatronics, 21 (2011), 523-533.
doi: 10.1016/j.mechatronics.2011.01.010. |
[7] |
F. Dai, X. Gao, S. Jiang, Y. Liu and J. Li, A multi-DOF two wheeled inverted pendulum robot climbing on a slope, in Robotics and Biomimetics (ROBIO), 2014 IEEE International Conference on, 2014, 1958-1963.
doi: 10.1109/ROBIO.2014.7090623. |
[8] |
D. Feng, J. Huang, Y. Wang, X. Gao, T. Matsuno and T. Fukuda, et al., Optimal braking control for UW-Car using sliding mode, in ROBIO 2009, Guilin 2009, 117-122. |
[9] |
D. Feng, J. Huang, Y. Wang, T. Matsuno, T. Fukuda and K. Sekiyama, Modeling and control of a novel narrow vehicle, in 2010 IEEE International Conference on Robotics and Biomimetics (ROBIO), 2010, 1130-1135. |
[10] |
S. M. Goza, R. O. Ambrose, M. A. Diftler and I. M. Spain, Telepresence control of the NASA/DARPA Robonaut on a mobility platform, in 2004 Conference on Human Factors in Computing Systems, Vienna, 2014, 623-629.
doi: 10.1145/985692.985771. |
[11] |
F. Grasser, A. D'Arrigo, S. Colombi and A. C. Rufer, JOE: a mobile, inverted pendulum, IEEE Transactions on Industrial Electronics, 49 (2002), 107-114.
doi: 10.1109/41.982254. |
[12] |
Z.-Q. Guo, J.-X. Xu and T. Heng Lee, Design and implementation of a new sliding mode controller on an underactuated wheeled inverted pendulum, Journal of the Franklin Institute, 351 (2014), 2261-2282.
doi: 10.1016/j.jfranklin.2013.02.002. |
[13] |
H. Jian, D. Feng, T. Fukuda and T. Matsuno, Modeling and velocity control for a novel narrow vehicle based on mobile wheeled inverted pendulum, IEEE Transactions on Control Systems Technology, 21 (2013), 1607-1617. |
[14] |
S. Jung and S. S. Kim, Control experiment of a wheel-driven mobile inverted pendulum using neural network, Control Systems Technology, IEEE Transactions on, 16 (2008), 297-303. |
[15] |
D. Kamen, Segway,, Available: , ().
|
[16] |
A. Ko, H. Y. K. Lau and T. L. Lau, SOHO security with mini self-balancing robots, Industrial Robot, 32 (2005), 492-498. |
[17] |
L. Mao, J. Huang, F. Ding, T. Fukuda and T. Matsuno, Modeling and control for UW-Car in rough terrain, in 10th World Congress on Intelligent Control and Automation, WCICA 2012, Beijing, 2012, 3747-3752.
doi: 10.1109/WCICA.2012.6359097. |
[18] |
S. Nagaya, T. Morikawa, I. Takami and C. Gan, Robust LQ control for parallel wheeled inverted pendulum, in Control Conference (AUCC), Australian, 2013, 189-194.
doi: 10.1109/AUCC.2013.6697271. |
[19] |
A. N. K. Nasir, M. A. Ahmad, R. Ghazali and N. S. Pakheri, Performance comparison between fuzzy logic controller (FLC) and PID controller for a highly nonlinear two-wheels balancing robot, in 2011 First International Conference on Informatics and Computational Intelligence (ICI), Bandung, 2011, 176-181.
doi: 10.1109/ICI.2011.37. |
[20] |
K. Pathak, J. Franch and S. K. Agrawal, Velocity and position control of a wheeled inverted pendulum by partial feedback linearization, Robotics, IEEE Transactions on, 21 (2005), 505-513.
doi: 10.1109/TRO.2004.840905. |
[21] |
N. Jin Seok, L. Geun Hyeong, C. Ho Jin and J. Seul, Robust control of a mobile inverted pendulum robot using a RBF neural network controller, in 2008 IEEE International Conference on Robotics and Biomimetics, Piscataway, 2008, 1932-1937. |
[22] |
A. Shimada and N. Hatakeyama, High-speed motion control of wheeled inverted pendulum robots, in ICMA 2007, 2007, 1-6.
doi: 10.1109/ICMECH.2007.4280028. |
[23] |
L. Shui-Chun, T. Ching-Chih and H. Hsu-Chih, Adaptive robust self-balancing and steering of a two-wheeled human transportation vehicle, Journal of Intelligent & Robotic Systems, 62 (2011), 103-123. |
[24] |
T. Takei, R. Imamura and S. Yuta, Baggage transportation and navigation by a wheeled inverted pendulum mobile robot, IEEE Transactions on Industrial Electronics, 56 (2009), 3985-3994.
doi: 10.1109/TIE.2009.2027252. |
[25] |
J.-X. Xu, Z.-Q. Guo and T. H. Lee, Design and implementation of a Takagi-Sugeno-type fuzzy logic controller on a two-wheeled mobile robot, Industrial Electronics, IEEE Transactions on, 60 (2013), 5717-5728.
doi: 10.1109/TIE.2012.2230600. |
[26] |
K. Yeon Hoon, K. Soo Hyun and K. Yoon Keun, Dynamic analysis of a nonholonomic two-wheeled inverted pendulum robot, Journal of Intelligent and Robotic Systems: Theory and Applications, 44 (2005), 25-46. |
[27] |
L. Zhijun and X. Chunquan, Adaptive fuzzy logic control of dynamic balance and motion for wheeled inverted pendulums, Fuzzy Sets and Systems, 160 (2009), 1787-1803.
doi: 10.1016/j.fss.2008.09.013. |
show all references
References:
[1] |
A. Ahmadi, H. A. Rahim and R. A. Rahim, Optimization of a self-tuning PID type fuzzy controller and a PID controller for an inverted pendulum, Journal of Intelligent & Fuzzy Systems, 26 (2014), 1987-1999. |
[2] |
M. Alarfaj and G. Kantor, Centrifugal force compensation of a two-wheeled balancing robot, in 2010 11th International Conference on Control Automation Robotics & Vision (ICARCV 2010), Piscataway 2010, 2333-2338.
doi: 10.1109/ICARCV.2010.5707337. |
[3] |
M. Bruning, F. Heinemann, W. Schonewolf and J. Kruger, Design and implementation of a Kalman state estimator for balancing of uniaxial vehicles for goods transport, in 2013 IEEE International Conference on Mechatronics (ICM), 2013, 260-266.
doi: 10.1109/ICMECH.2013.6518546. |
[4] |
L. J. Butler and G. Bright, Control strategy for a mobile self-balancing materials handling platform, Journal of Engineering, Design and Technology, 8 (2010), 6-27.
doi: 10.1108/17260531011034628. |
[5] |
L. Chaoquan, G. Xueshan, H. Qiang, D. Fuquan, S. Jie and B. Yang, et al., A coaxial couple wheeled robot with T-S fuzzy equilibrium control, Industrial Robot, 38 (2011), 292-300. |
[6] |
C.-H. Chiu, Y.-W. Lin and C.-H. Lin, Real-time control of a wheeled inverted pendulum based on an intelligent model free controller, Mechatronics, 21 (2011), 523-533.
doi: 10.1016/j.mechatronics.2011.01.010. |
[7] |
F. Dai, X. Gao, S. Jiang, Y. Liu and J. Li, A multi-DOF two wheeled inverted pendulum robot climbing on a slope, in Robotics and Biomimetics (ROBIO), 2014 IEEE International Conference on, 2014, 1958-1963.
doi: 10.1109/ROBIO.2014.7090623. |
[8] |
D. Feng, J. Huang, Y. Wang, X. Gao, T. Matsuno and T. Fukuda, et al., Optimal braking control for UW-Car using sliding mode, in ROBIO 2009, Guilin 2009, 117-122. |
[9] |
D. Feng, J. Huang, Y. Wang, T. Matsuno, T. Fukuda and K. Sekiyama, Modeling and control of a novel narrow vehicle, in 2010 IEEE International Conference on Robotics and Biomimetics (ROBIO), 2010, 1130-1135. |
[10] |
S. M. Goza, R. O. Ambrose, M. A. Diftler and I. M. Spain, Telepresence control of the NASA/DARPA Robonaut on a mobility platform, in 2004 Conference on Human Factors in Computing Systems, Vienna, 2014, 623-629.
doi: 10.1145/985692.985771. |
[11] |
F. Grasser, A. D'Arrigo, S. Colombi and A. C. Rufer, JOE: a mobile, inverted pendulum, IEEE Transactions on Industrial Electronics, 49 (2002), 107-114.
doi: 10.1109/41.982254. |
[12] |
Z.-Q. Guo, J.-X. Xu and T. Heng Lee, Design and implementation of a new sliding mode controller on an underactuated wheeled inverted pendulum, Journal of the Franklin Institute, 351 (2014), 2261-2282.
doi: 10.1016/j.jfranklin.2013.02.002. |
[13] |
H. Jian, D. Feng, T. Fukuda and T. Matsuno, Modeling and velocity control for a novel narrow vehicle based on mobile wheeled inverted pendulum, IEEE Transactions on Control Systems Technology, 21 (2013), 1607-1617. |
[14] |
S. Jung and S. S. Kim, Control experiment of a wheel-driven mobile inverted pendulum using neural network, Control Systems Technology, IEEE Transactions on, 16 (2008), 297-303. |
[15] |
D. Kamen, Segway,, Available: , ().
|
[16] |
A. Ko, H. Y. K. Lau and T. L. Lau, SOHO security with mini self-balancing robots, Industrial Robot, 32 (2005), 492-498. |
[17] |
L. Mao, J. Huang, F. Ding, T. Fukuda and T. Matsuno, Modeling and control for UW-Car in rough terrain, in 10th World Congress on Intelligent Control and Automation, WCICA 2012, Beijing, 2012, 3747-3752.
doi: 10.1109/WCICA.2012.6359097. |
[18] |
S. Nagaya, T. Morikawa, I. Takami and C. Gan, Robust LQ control for parallel wheeled inverted pendulum, in Control Conference (AUCC), Australian, 2013, 189-194.
doi: 10.1109/AUCC.2013.6697271. |
[19] |
A. N. K. Nasir, M. A. Ahmad, R. Ghazali and N. S. Pakheri, Performance comparison between fuzzy logic controller (FLC) and PID controller for a highly nonlinear two-wheels balancing robot, in 2011 First International Conference on Informatics and Computational Intelligence (ICI), Bandung, 2011, 176-181.
doi: 10.1109/ICI.2011.37. |
[20] |
K. Pathak, J. Franch and S. K. Agrawal, Velocity and position control of a wheeled inverted pendulum by partial feedback linearization, Robotics, IEEE Transactions on, 21 (2005), 505-513.
doi: 10.1109/TRO.2004.840905. |
[21] |
N. Jin Seok, L. Geun Hyeong, C. Ho Jin and J. Seul, Robust control of a mobile inverted pendulum robot using a RBF neural network controller, in 2008 IEEE International Conference on Robotics and Biomimetics, Piscataway, 2008, 1932-1937. |
[22] |
A. Shimada and N. Hatakeyama, High-speed motion control of wheeled inverted pendulum robots, in ICMA 2007, 2007, 1-6.
doi: 10.1109/ICMECH.2007.4280028. |
[23] |
L. Shui-Chun, T. Ching-Chih and H. Hsu-Chih, Adaptive robust self-balancing and steering of a two-wheeled human transportation vehicle, Journal of Intelligent & Robotic Systems, 62 (2011), 103-123. |
[24] |
T. Takei, R. Imamura and S. Yuta, Baggage transportation and navigation by a wheeled inverted pendulum mobile robot, IEEE Transactions on Industrial Electronics, 56 (2009), 3985-3994.
doi: 10.1109/TIE.2009.2027252. |
[25] |
J.-X. Xu, Z.-Q. Guo and T. H. Lee, Design and implementation of a Takagi-Sugeno-type fuzzy logic controller on a two-wheeled mobile robot, Industrial Electronics, IEEE Transactions on, 60 (2013), 5717-5728.
doi: 10.1109/TIE.2012.2230600. |
[26] |
K. Yeon Hoon, K. Soo Hyun and K. Yoon Keun, Dynamic analysis of a nonholonomic two-wheeled inverted pendulum robot, Journal of Intelligent and Robotic Systems: Theory and Applications, 44 (2005), 25-46. |
[27] |
L. Zhijun and X. Chunquan, Adaptive fuzzy logic control of dynamic balance and motion for wheeled inverted pendulums, Fuzzy Sets and Systems, 160 (2009), 1787-1803.
doi: 10.1016/j.fss.2008.09.013. |
[1] |
Mari Paz Calvo, Jesus M. Sanz-Serna. Carrying an inverted pendulum on a bumpy road. Discrete and Continuous Dynamical Systems - B, 2010, 14 (2) : 429-438. doi: 10.3934/dcdsb.2010.14.429 |
[2] |
Xianwei Chen, Zhujun Jing, Xiangling Fu. Chaos control in a pendulum system with excitations. Discrete and Continuous Dynamical Systems - B, 2015, 20 (2) : 373-383. doi: 10.3934/dcdsb.2015.20.373 |
[3] |
Roman Srzednicki. On periodic solutions in the Whitney's inverted pendulum problem. Discrete and Continuous Dynamical Systems - S, 2019, 12 (7) : 2127-2141. doi: 10.3934/dcdss.2019137 |
[4] |
Ivan Polekhin. On motions without falling of an inverted pendulum with dry friction. Journal of Geometric Mechanics, 2018, 10 (4) : 411-417. doi: 10.3934/jgm.2018015 |
[5] |
Leonid Shaikhet. Improved condition for stabilization of controlled inverted pendulum under stochastic perturbations. Discrete and Continuous Dynamical Systems, 2009, 24 (4) : 1335-1343. doi: 10.3934/dcds.2009.24.1335 |
[6] |
Xianwei Chen, Xiangling Fu, Zhujun Jing. Chaos control in a special pendulum system for ultra-subharmonic resonance. Discrete and Continuous Dynamical Systems - B, 2021, 26 (2) : 847-860. doi: 10.3934/dcdsb.2020144 |
[7] |
Tayel Dabbous. Adaptive control of nonlinear systems using fuzzy systems. Journal of Industrial and Management Optimization, 2010, 6 (4) : 861-880. doi: 10.3934/jimo.2010.6.861 |
[8] |
Ciro D’Apice, Umberto De Maio, Peter I. Kogut. Boundary velocity suboptimal control of incompressible flow in cylindrically perforated domain. Discrete and Continuous Dynamical Systems - B, 2009, 11 (2) : 283-314. doi: 10.3934/dcdsb.2009.11.283 |
[9] |
Yong Zhao, Qishao Lu. Periodic oscillations in a class of fuzzy neural networks under impulsive control. Conference Publications, 2011, 2011 (Special) : 1457-1466. doi: 10.3934/proc.2011.2011.1457 |
[10] |
Omid S. Fard, Javad Soolaki, Delfim F. M. Torres. A necessary condition of Pontryagin type for fuzzy fractional optimal control problems. Discrete and Continuous Dynamical Systems - S, 2018, 11 (1) : 59-76. doi: 10.3934/dcdss.2018004 |
[11] |
Aliki D. Muradova, Georgios K. Tairidis, Georgios E. Stavroulakis. Adaptive Neuro-Fuzzy vibration control of a smart plate. Numerical Algebra, Control and Optimization, 2017, 7 (3) : 251-271. doi: 10.3934/naco.2017017 |
[12] |
Peng Cheng, Yanqing Liu, Yanyan Yin, Song Wang, Feng Pan. Fuzzy event-triggered disturbance rejection control of nonlinear systems. Journal of Industrial and Management Optimization, 2021, 17 (6) : 3297-3307. doi: 10.3934/jimo.2020119 |
[13] |
Tien-Fu Liang, Hung-Wen Cheng. Multi-objective aggregate production planning decisions using two-phase fuzzy goal programming method. Journal of Industrial and Management Optimization, 2011, 7 (2) : 365-383. doi: 10.3934/jimo.2011.7.365 |
[14] |
Kuang Huang, Xuan Di, Qiang Du, Xi Chen. A game-theoretic framework for autonomous vehicles velocity control: Bridging microscopic differential games and macroscopic mean field games. Discrete and Continuous Dynamical Systems - B, 2020, 25 (12) : 4869-4903. doi: 10.3934/dcdsb.2020131 |
[15] |
Xingyue Liang, Jianwei Xia, Guoliang Chen, Huasheng Zhang, Zhen Wang. $ \mathcal{H}_{\infty} $ control for fuzzy markovian jump systems based on sampled-data control method. Discrete and Continuous Dynamical Systems - S, 2021, 14 (4) : 1329-1343. doi: 10.3934/dcdss.2020368 |
[16] |
Enrique Fernández-Cara, Juan Límaco, Laurent Prouvée. Optimal control of a two-equation model of radiotherapy. Mathematical Control and Related Fields, 2018, 8 (1) : 117-133. doi: 10.3934/mcrf.2018005 |
[17] |
Mostafa Ghelichi, A. M. Goltabar, H. R. Tavakoli, A. Karamodin. Neuro-fuzzy active control optimized by Tug of war optimization method for seismically excited benchmark highway bridge. Numerical Algebra, Control and Optimization, 2021, 11 (3) : 333-351. doi: 10.3934/naco.2020029 |
[18] |
Yuan Li, Ruxia Zhang, Yi Zhang, Bo Yang. Sliding mode control for uncertain T-S fuzzy systems with input and state delays. Numerical Algebra, Control and Optimization, 2020, 10 (3) : 345-354. doi: 10.3934/naco.2020006 |
[19] |
Dongyun Wang. Sliding mode observer based control for T-S fuzzy descriptor systems. Mathematical Foundations of Computing, 2022, 5 (1) : 17-32. doi: 10.3934/mfc.2021017 |
[20] |
Jean Blaise Teguia, Alain Soup Tewa Kammogne, Stella Germaine Tsakoue Ganmene, Martin Siewe Siewe, Godpromesse Kenne. Fuzzy-enhanced robust fault-tolerant control of IFOC motor with matched and mismatched disturbances. Mathematical Foundations of Computing, 2022 doi: 10.3934/mfc.2022006 |
2020 Impact Factor: 2.425
Tools
Metrics
Other articles
by authors
[Back to Top]