Citation: |
[1] |
M. Acu, On a subclass of n-uniformly close-to-convex functions, Gen. Math., 14 (2006), 55-64. |
[2] |
S. D. Bernardi, Convex and starlike univalent functions, Trans. Amer. Math. Soc., 135 (1969), 429-446.doi: 10.1090/S0002-9947-1969-0232920-2. |
[3] |
D. A. Brannan, On function of bounded boundary rotation, Proc. Edin. Math. Soc., 2 (1968/69), 339-347. |
[4] |
M. Caglar, H. Ohan and E. Deniz, Majorization for certain subclass of analytic functions involving the generalized Noor integral operator, Filomat, 27 (2013), 143-148.doi: 10.2298/FIL1301143C. |
[5] |
N. E. Cho, S. Kwon and H. M. Srivastava, Inclusion relationships and argument properties for certain subclasses of multivalent functions associated with a family of linear operators, J. Math. Anal. Appl., 292 (2004), 470-483.doi: 10.1016/j.jmaa.2003.12.026. |
[6] |
E. Denz, Univalence criteria for a general integral operator, Filomat, 28 (2014), 11-19.doi: 10.2298/FIL1401011D. |
[7] |
A. W. Goodman, On uniformly starlike functions, J. Math. Anal. Appl., 155 (1991), 364-370.doi: 10.1016/0022-247X(91)90006-L. |
[8] |
A. W. Goodman, On close-to-convex functions of higher order, Ann. Univ. Budapest, Eotous, Sect. Math., 15 (1972), 17-30. |
[9] |
A. W. Goodman, Univalent Functions, Vol I, II, Polygonal Publishing House, Washington, NJ. , 1983. |
[10] |
I. B. Jung, Y. C. Kim and H. M. Srivastava, The Hardy space of analytic functions associated with certain one-parameter families of integral operator, J. Math. Anal. Appl., 176 (1993), 138-147.doi: 10.1006/jmaa.1993.1204. |
[11] |
S. Kanas and A. Wisniowska, Conic domains and starlike functions, Rev. Roumaine Math. Pures. Appl., 45 (2000), 647-657. |
[12] |
S. Kanas, Techniques of the differential subordination for domain bounded by conic sections, Int. J. Math. Math. Sci., 38 (2003), 2389-2400.doi: 10.1155/S0161171203302212. |
[13] |
W. Kaplan, Close-to-convex schlicht functions, Michigan J. Math., 1 (1952), 169-185.doi: 10.1307/mmj/1028988895. |
[14] |
R. J. Libera, Some classes of regular univalent functions, Proc. Amer. Math. Soc., 16 (1965), 755-758.doi: 10.1090/S0002-9939-1965-0178131-2. |
[15] |
S. S. Miller and P. T. Mocanu, Differential Subordinations, Theory and Applications, Vol. 225, Marcel Dekker, New York, USA, 2000. |
[16] |
E. J. Moulis, Generalizations of Robertson functions, Pacific J. Math., 81 (1979), 167-174.doi: 10.2140/pjm.1979.81.167. |
[17] |
K. I. Noor, On quasi-convex functions and related topics, Inter. J. Math. Math. Sci., 10 (1987), 241-258. |
[18] |
K. I. Noor, On generalization of close-to-convexity, Inter. J. Math. Math. Sci., 23 (1981), 217-219. |
[19] |
K. I. Noor, On generalization of uniformly convex and related functions, Comput. Math. Appl., 61 (2011), 117-125.doi: 10.1016/j.camwa.2010.10.038. |
[20] |
K. I. Noor, Higher order close-to-convex functions, Math. Japonica, 37 (1992), 1-8. |
[21] |
K. I. Noor, R. Fayyaz and M. A. Noor, Some classes of k-uniformly functions with bounded radius rotation, Appl. Math. Inform. Sci., 8 (2014), 527-533.doi: 10.12785/amis/080210. |
[22] |
K. I. Noor, W. Ul-Haq, M. Arif and S. Mustafa, On functions of bounded boundary and bounded radius rotations, J. Inequa. Appl., (2009), Article ID 813687, 12 pages.doi: 10.1155/2009/813687. |
[23] |
K. I. Noor, M. Arif and W. Ul-Haq, On k-uniformly close-to-convex functions of complex order, Appl. Math. Comput., 215 (2009), 629-635.doi: 10.1016/j.amc.2009.05.050. |
[24] |
K. I. Noor and N. Khan, Some Classes of $p$-valent analytic functions associated with hypergeometric functions, Filomat, 29 (2015), 1031-1038.doi: 10.2298/FIL1505031N. |
[25] |
K. I. Noor, N. Khan and M. A. Noor, On generalized spiral-like analytic functions, Filomat, 28 (2014), 1493-1503.doi: 10.2298/FIL1407493N. |
[26] |
K. I. Noor and M. A. Noor, Higher-order close-to-convex functions related with conic domain, Appl. Math. Inform. Sci., 8 (2014), 2455-2463.doi: 10.12785/amis/080541. |
[27] |
K. I. Noor and D. K. Thomas, Quasi-convex univalent functions, Int. J. Math. Math. Sci., 3 (1980), 255-266.doi: 10.1155/S016117128000018X. |
[28] |
M. Obradovic and P. Ponnusanny, Radius of univalence of certain class of analytic functions, Filomat, 27 (2013), 1085-1090.doi: 10.2298/FIL1306085O. |
[29] |
T. O. Opoola and K. O. Babalola, Some applications of a lemma concerning analytic functions with positive real parts in the unit disk, Int. J. Math. Comput. Sci., 2 (2007), 361-369. |
[30] |
R. Parvatham and S. Radha, On certain classes of analytic functions, Ann. Polon Math., 49 (1988), 31-34. |
[31] |
B. Pinchuk, Functions with bounded boundary rotation, Isr. J. Math., 10 (1971), 6-16.doi: 10.1007/BF02771515. |
[32] |
Ch. Pommerenke, On close-to-convex analytic functions, Trans. Amer. Math. Soc., 114 (1965), 176-186.doi: 10.1090/S0002-9947-1965-0174720-4. |
[33] |
G. S. Salagean, Subclasses of univalent functions, in Complex Analysis - Fifth Romanian-Finnish Seminar, Lecture Notes in Mathematics, 1013, Springer-Verlag, Berlin, 1983, 362-372.doi: 10.1007/BFb0066543. |
[34] |
D. K. Thomas, On Bazilevic functions, Trans. Amer. Math. Soc., 132 (1968), 353-361. |