-
Previous Article
Geometric two-scale convergence on manifold and applications to the Vlasov equation
- DCDS-S Home
- This Issue
-
Next Article
An exponential integrator for a highly oscillatory vlasov equation
Application of Lie transform techniques for simulation of a charged particle beam
1. | Inria Nancy-Grand Est, CALVI Project, & IRMA (UMR CNRS 7501), Université de Strasbourg, 7, rue René-Descartes, 67084, Strasbourg, France |
References:
[1] |
J. A. Brizard, Nonlinear gyrokinetic Vlasov equation for toroidally rotating axisymmetric tokamaks, Physics of Plasmas, 2 (1995), 459-471.
doi: 10.1063/1.871465. |
[2] |
N. Crouseilles, M. Lemou and F. Méhats, Asymptotic preserving schemes for highly oscillatory kinetic equations, J. Comp. Phys., 248 (2013), 287-308.
doi: 10.1016/j.jcp.2013.04.022. |
[3] |
D. H. E. Dubin, J. A. Krommes, C. Oberman and W. W. Lee, Nonlinear gyrokinetic equations, Physics of Fluids, 26 (1983), 3524-3535.
doi: 10.1063/1.864113. |
[4] |
F. Filbet and E. Sonnendrücker, Modeling and numerical simulation of space charge dominated beams in the paraxial approximation, Mathematical Models and Methods in Applied Sciences, 16 (2006), 763-791.
doi: 10.1142/S0218202506001340. |
[5] |
E. Frénod, F. Salvarani and E. Sonnendrücker, Long time simulation of a beam in a periodic focusing channel via a two-scale PIC-method, Mathematical Models and Methods in Applied Sciences, 19 (2009), 175-197.
doi: 10.1142/S0218202509003395. |
[6] |
E. Frénod and E. Sonnendrücker, The finite larmor radius approximation, SIAM J. Math. Anal., 32 (2001), 1227-1247.
doi: 10.1137/S0036141099364243. |
[7] |
E. A. Frieman and L. Chen, Nonlinear gyrokinetic equations for low-frequency electromagnetic waves in general plasma equilibria, Physics of Fluids, 25 (1982), 502-508.
doi: 10.1063/1.863762. |
[8] |
T. S. Hahm, Nonlinear gyrokinetic equations for tokamak microturbulence, Physics of Fluids, 31 (1988), 2670-2673.
doi: 10.1063/1.866544. |
[9] |
T. S. Hahm, W. W. Lee and A. Brizard, Nonlinear gyrokinetic theory for finite-beta plasmas, Physics of Fluids, 31 (1988), 1940-1948.
doi: 10.1063/1.866641. |
[10] |
R. G. Littlejohn, A guiding center Hamiltonian: A new approach, Journal of Mathematical Physics, 20 (1979), 2445-2458.
doi: 10.1063/1.524053. |
[11] |
R. G. Littlejohn, Hamiltonian formulation of guiding center motion, Physics of Fluids, 24 (1981), 1730-1749.
doi: 10.1063/1.863594. |
[12] |
R. G. Littlejohn, Hamiltonian perturbation theory in noncanonical coordinates, Journal of Mathematical Physics, 23 (1982), 742-747.
doi: 10.1063/1.525429. |
[13] |
J. E. Marsden and T. S. Ratiu, Introduction to Mechanics and Symmetry: A Basic Exposition of Classical Mechanical Systems, Springer, 1999.
doi: 10.1007/978-0-387-21792-5. |
[14] |
K. R. Meyer and G. R. Hall, Introduction to Hamiltonian Dynamical Systems and the N-Body Problem, Applied Mathematical Sciences, 90, Springer-Verlag, New York, 1992.
doi: 10.1007/978-1-4757-4073-8. |
[15] |
P. J. Olver, Applications of Lie Groups to Differential Equations, Second edition, Graduate Texts in Mathematics, 107, Springer-Verlag, New York, 1993.
doi: 10.1007/978-1-4612-4350-2. |
[16] |
F. I. Parra and P. J. Catto, Limitations of gyrokinetics on transport time scales, Plasma Physics and Controlled Fusion, 50 (2008), 065014.
doi: 10.1088/0741-3335/50/6/065014. |
[17] |
F. I. Parra and P. J. Catto, Gyrokinetic equivalence, Plasma Physics and Controlled Fusion, 51 (2009), 065002.
doi: 10.1088/0741-3335/51/6/065002. |
[18] |
F. I. Parra and P. J. Catto, Turbulent transport of toroidal angular momentum in low flow gyrokinetics, Plasma Physics and Controlled Fusion, 52 (2010), 045004.
doi: 10.1088/0741-3335/52/4/045004. |
[19] |
H. Qin, R. H. Cohen, W. M. Nevins and X. Q. Xu, General gyrokinetic equations for edge plasmas, Contributions to Plasma Physics, 46 (2006), 477-489.
doi: 10.1002/ctpp.200610034. |
show all references
References:
[1] |
J. A. Brizard, Nonlinear gyrokinetic Vlasov equation for toroidally rotating axisymmetric tokamaks, Physics of Plasmas, 2 (1995), 459-471.
doi: 10.1063/1.871465. |
[2] |
N. Crouseilles, M. Lemou and F. Méhats, Asymptotic preserving schemes for highly oscillatory kinetic equations, J. Comp. Phys., 248 (2013), 287-308.
doi: 10.1016/j.jcp.2013.04.022. |
[3] |
D. H. E. Dubin, J. A. Krommes, C. Oberman and W. W. Lee, Nonlinear gyrokinetic equations, Physics of Fluids, 26 (1983), 3524-3535.
doi: 10.1063/1.864113. |
[4] |
F. Filbet and E. Sonnendrücker, Modeling and numerical simulation of space charge dominated beams in the paraxial approximation, Mathematical Models and Methods in Applied Sciences, 16 (2006), 763-791.
doi: 10.1142/S0218202506001340. |
[5] |
E. Frénod, F. Salvarani and E. Sonnendrücker, Long time simulation of a beam in a periodic focusing channel via a two-scale PIC-method, Mathematical Models and Methods in Applied Sciences, 19 (2009), 175-197.
doi: 10.1142/S0218202509003395. |
[6] |
E. Frénod and E. Sonnendrücker, The finite larmor radius approximation, SIAM J. Math. Anal., 32 (2001), 1227-1247.
doi: 10.1137/S0036141099364243. |
[7] |
E. A. Frieman and L. Chen, Nonlinear gyrokinetic equations for low-frequency electromagnetic waves in general plasma equilibria, Physics of Fluids, 25 (1982), 502-508.
doi: 10.1063/1.863762. |
[8] |
T. S. Hahm, Nonlinear gyrokinetic equations for tokamak microturbulence, Physics of Fluids, 31 (1988), 2670-2673.
doi: 10.1063/1.866544. |
[9] |
T. S. Hahm, W. W. Lee and A. Brizard, Nonlinear gyrokinetic theory for finite-beta plasmas, Physics of Fluids, 31 (1988), 1940-1948.
doi: 10.1063/1.866641. |
[10] |
R. G. Littlejohn, A guiding center Hamiltonian: A new approach, Journal of Mathematical Physics, 20 (1979), 2445-2458.
doi: 10.1063/1.524053. |
[11] |
R. G. Littlejohn, Hamiltonian formulation of guiding center motion, Physics of Fluids, 24 (1981), 1730-1749.
doi: 10.1063/1.863594. |
[12] |
R. G. Littlejohn, Hamiltonian perturbation theory in noncanonical coordinates, Journal of Mathematical Physics, 23 (1982), 742-747.
doi: 10.1063/1.525429. |
[13] |
J. E. Marsden and T. S. Ratiu, Introduction to Mechanics and Symmetry: A Basic Exposition of Classical Mechanical Systems, Springer, 1999.
doi: 10.1007/978-0-387-21792-5. |
[14] |
K. R. Meyer and G. R. Hall, Introduction to Hamiltonian Dynamical Systems and the N-Body Problem, Applied Mathematical Sciences, 90, Springer-Verlag, New York, 1992.
doi: 10.1007/978-1-4757-4073-8. |
[15] |
P. J. Olver, Applications of Lie Groups to Differential Equations, Second edition, Graduate Texts in Mathematics, 107, Springer-Verlag, New York, 1993.
doi: 10.1007/978-1-4612-4350-2. |
[16] |
F. I. Parra and P. J. Catto, Limitations of gyrokinetics on transport time scales, Plasma Physics and Controlled Fusion, 50 (2008), 065014.
doi: 10.1088/0741-3335/50/6/065014. |
[17] |
F. I. Parra and P. J. Catto, Gyrokinetic equivalence, Plasma Physics and Controlled Fusion, 51 (2009), 065002.
doi: 10.1088/0741-3335/51/6/065002. |
[18] |
F. I. Parra and P. J. Catto, Turbulent transport of toroidal angular momentum in low flow gyrokinetics, Plasma Physics and Controlled Fusion, 52 (2010), 045004.
doi: 10.1088/0741-3335/52/4/045004. |
[19] |
H. Qin, R. H. Cohen, W. M. Nevins and X. Q. Xu, General gyrokinetic equations for edge plasmas, Contributions to Plasma Physics, 46 (2006), 477-489.
doi: 10.1002/ctpp.200610034. |
[1] |
Jean Dolbeault. An introduction to kinetic equations: the Vlasov-Poisson system and the Boltzmann equation. Discrete and Continuous Dynamical Systems, 2002, 8 (2) : 361-380. doi: 10.3934/dcds.2002.8.361 |
[2] |
Katherine Zhiyuan Zhang. Focusing solutions of the Vlasov-Poisson system. Kinetic and Related Models, 2019, 12 (6) : 1313-1327. doi: 10.3934/krm.2019051 |
[3] |
Blanca Ayuso, José A. Carrillo, Chi-Wang Shu. Discontinuous Galerkin methods for the one-dimensional Vlasov-Poisson system. Kinetic and Related Models, 2011, 4 (4) : 955-989. doi: 10.3934/krm.2011.4.955 |
[4] |
Jack Schaeffer. Global existence for the Vlasov-Poisson system with steady spatial asymptotic behavior. Kinetic and Related Models, 2012, 5 (1) : 129-153. doi: 10.3934/krm.2012.5.129 |
[5] |
Gianluca Crippa, Silvia Ligabue, Chiara Saffirio. Lagrangian solutions to the Vlasov-Poisson system with a point charge. Kinetic and Related Models, 2018, 11 (6) : 1277-1299. doi: 10.3934/krm.2018050 |
[6] |
Zili Chen, Xiuting Li, Xianwen Zhang. The two dimensional Vlasov-Poisson system with steady spatial asymptotics. Kinetic and Related Models, 2017, 10 (4) : 977-1009. doi: 10.3934/krm.2017039 |
[7] |
Meixia Xiao, Xianwen Zhang. On global solutions to the Vlasov-Poisson system with radiation damping. Kinetic and Related Models, 2018, 11 (5) : 1183-1209. doi: 10.3934/krm.2018046 |
[8] |
Jack Schaeffer. On time decay for the spherically symmetric Vlasov-Poisson system. Kinetic and Related Models, 2022, 15 (4) : 721-727. doi: 10.3934/krm.2021021 |
[9] |
Gerhard Rein, Christopher Straub. On the transport operators arising from linearizing the Vlasov-Poisson or Einstein-Vlasov system about isotropic steady states. Kinetic and Related Models, 2020, 13 (5) : 933-949. doi: 10.3934/krm.2020032 |
[10] |
Figen Özpinar, Fethi Bin Muhammad Belgacem. The discrete homotopy perturbation Sumudu transform method for solving partial difference equations. Discrete and Continuous Dynamical Systems - S, 2019, 12 (3) : 615-624. doi: 10.3934/dcdss.2019039 |
[11] |
William Guo. The Laplace transform as an alternative general method for solving linear ordinary differential equations. STEM Education, 2021, 1 (4) : 309-329. doi: 10.3934/steme.2021020 |
[12] |
David Blázquez-Sanz, Juan J. Morales-Ruiz. Lie's reduction method and differential Galois theory in the complex analytic context. Discrete and Continuous Dynamical Systems, 2012, 32 (2) : 353-379. doi: 10.3934/dcds.2012.32.353 |
[13] |
Hyung Ju Hwang, Jaewoo Jung, Juan J. L. Velázquez. On global existence of classical solutions for the Vlasov-Poisson system in convex bounded domains. Discrete and Continuous Dynamical Systems, 2013, 33 (2) : 723-737. doi: 10.3934/dcds.2013.33.723 |
[14] |
Francis Filbet, Roland Duclous, Bruno Dubroca. Analysis of a high order finite volume scheme for the 1D Vlasov-Poisson system. Discrete and Continuous Dynamical Systems - S, 2012, 5 (2) : 283-305. doi: 10.3934/dcdss.2012.5.283 |
[15] |
Trinh T. Nguyen. Derivative estimates for screened Vlasov-Poisson system around Penrose-stable equilibria. Kinetic and Related Models, 2020, 13 (6) : 1193-1218. doi: 10.3934/krm.2020043 |
[16] |
Yuhua Zhu. A local sensitivity and regularity analysis for the Vlasov-Poisson-Fokker-Planck system with multi-dimensional uncertainty and the spectral convergence of the stochastic Galerkin method. Networks and Heterogeneous Media, 2019, 14 (4) : 677-707. doi: 10.3934/nhm.2019027 |
[17] |
C E Yarman, B Yazıcı. A new exact inversion method for exponential Radon transform using the harmonic analysis of the Euclidean motion group. Inverse Problems and Imaging, 2007, 1 (3) : 457-479. doi: 10.3934/ipi.2007.1.457 |
[18] |
Muhammad Arfan, Kamal Shah, Aman Ullah, Soheil Salahshour, Ali Ahmadian, Massimiliano Ferrara. A novel semi-analytical method for solutions of two dimensional fuzzy fractional wave equation using natural transform. Discrete and Continuous Dynamical Systems - S, 2022, 15 (2) : 315-338. doi: 10.3934/dcdss.2021011 |
[19] |
Silvia Caprino, Guido Cavallaro, Carlo Marchioro. Time evolution of a Vlasov-Poisson plasma with magnetic confinement. Kinetic and Related Models, 2012, 5 (4) : 729-742. doi: 10.3934/krm.2012.5.729 |
[20] |
Gang Li, Xianwen Zhang. A Vlasov-Poisson plasma of infinite mass with a point charge. Kinetic and Related Models, 2018, 11 (2) : 303-336. doi: 10.3934/krm.2018015 |
2020 Impact Factor: 2.425
Tools
Metrics
Other articles
by authors
[Back to Top]