\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Geometric two-scale convergence on manifold and applications to the Vlasov equation

Abstract Related Papers Cited by
  • We develop and we explain the two-scale convergence in the covariant formalism, i.e. using differential forms on a Riemannian manifold. For that purpose, we consider two manifolds $M$ and $Y$, the first one contains the positions and the second one the oscillations. We establish some convergence results working on geodesics on a manifold. Then, we apply this framework on examples.
    Mathematics Subject Classification: Primary: 58F15, 58F17; Secondary: 53C35.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    G. Allaire, Homogenization and two-scale convergence, SIAM J. Math. Anal., 23 (1992), 1482-1518.doi: 10.1137/0523084.

    [2]

    A. Back, Étude Théorique et Numérique Des Équations de Vlasov-Maxwell Dans le Formalisme Covariant, (French) Ph.D Thesis, 2011.

    [3]

    G. D. Birkhoff, What is the ergodic theorem?, Amer. Math. Monthly, 49 (1942), 222-226.doi: 10.2307/2303229.

    [4]

    E. Frénod and E. Sonnendrücker, The finite Larmor radius approximation, SIAM J. Math. Anal., 32 (2001), 1227-1247.doi: 10.1137/S0036141099364243.

    [5]

    E. Frénod and E. Sonnendrücker, Homogenization of the Vlasov equation and of the Vlasov-Poisson system with a strong external magnetic field, Asymptot. Anal., 18 (1998), 193-213.

    [6]

    E. Frénod and P.-A. Raviart and E. Sonnendrücker, Two-scale expansion of a singularly perturbed convection equation, J. Math. Pures Appl., 80 (2001), 815-843.doi: 10.1016/S0021-7824(01)01215-6.

    [7]

    D. Han-Kwan, The three-dimensional finite Larmor radius approximation, Asymptot. Anal., 66 (2010), 9-33.

    [8]

    E. Hopf, Statistik Der Geodätischen Linien in Mannigfaltigkeiten Negativer Krümmung, Ber. Verh. Sächs. Akad. Wiss. Leipzig, 1939.

    [9]

    J. Jost, Riemannian Geometry and Geometric Analysis, Fifth edition, Universitext, Springer-Verlag, Berlin, 2008.

    [10]

    F. I. Mautner, Geodesic flows on symmetric Riemann spaces, Ann. of Math., 65 (1957), 416-431.doi: 10.2307/1970054.

    [11]

    G. Nguetseng, A general convergence result for a functional related to the theory of homogenization, SIAM J. Math. Anal., 20 (1989), 608-623.doi: 10.1137/0520043.

    [12]

    H. C. Pak, Geometric two-scale convergence on forms and its applications to Maxwell's equations, Proc. R. Soc. Edinb., Sect. A, Math., 135 (2005), 133-157.doi: 10.1017/S0308210500003802.

    [13]

    C. H. Scott, $L^p$ theory of differential forms on manifolds, Trans. Amer. Math. Soc., 347 (1995), 2075-2096.doi: 10.2307/2154923.

    [14]

    C. H. Scott, $L^p$ Theory of Differential Forms on Manifolds, ProQuest LLC, Ann Arbor, MI, 1993.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(131) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return