April  2015, 8(2): 243-257. doi: 10.3934/dcdss.2015.8.243

Existence of solutions to boundary value problems for smectic liquid crystals

1. 

Department of Mathematics, Purdue University, West Lafayette, IN 47906, United States

2. 

Department of Mathematics, Chungnam National University, 99 Daehak-ro, Gung-Dong Yuseong-gu, Daejeon 305-764

Received  April 2013 Revised  October 2013 Published  July 2014

We prove lower semicontinuity and lower bounds for a Chen-Lubensky energy describing nematic/smectic liquid crystals with physically realistic boundary conditions. The Chen-Lubensky energy captures stable phases of the liquid crystal material, ranging from purely nematic or smectic states to coexisting nematic/smectic states. By including appropriate additional terms, the model includes the effects of applied electric or magnetic fields, and/or electrical self-interactions in the case of polarized liquid crystals. As a consequence of our results, we establish existence of minimizers with weak or strong anchoring of the director field (describing molecular orientation) at the boundary, and Dirichlet or Neumann boundary conditions on the smectic order parameter for the liquid crystal material.
Citation: Patricia Bauman, Daniel Phillips, Jinhae Park. Existence of solutions to boundary value problems for smectic liquid crystals. Discrete and Continuous Dynamical Systems - S, 2015, 8 (2) : 243-257. doi: 10.3934/dcdss.2015.8.243
References:
[1]

C. Bailey, E. C. Gartland and A. Jákli, Structure and stability of bent core liquid crystal fibers, Phys. Rev. E, 75 (2007), 031701. doi: 10.1103/PhysRevE.75.031701.

[2]

P. Bauman, M. C. Calderer, C. Liu and D. Phillips, The phase transition between nematic and smectic A* liquid crystals, Arch. Rational Mech. Anal., 165 (2002), 161-186. doi: 10.1007/s00205-002-0223-8.

[3]

P. Bauman and D. Phillips, Stability of bent core liquid crystal fibers, Molecular Crystals and Liquid Crystals Journal, 510 (2009), 1135-1145.

[4]

H. R. Brand, P. E. Cladis and H. Pleiner, Fluid biaxial banana smectics: Symmetry at work, Liquid Crystal Today, 9 (1999), 1-10.

[5]

H. R. Brand, P. E. Claids and H. Pleiner, Macroscopic properties of smectic $C_G$ liquid crystals, Eur. Phys. J. B, 6 (1998), 347-353.

[6]

M. Cagnon and G. Durand, Positional anchoring of smectic liquid crystals, Phys. Rev. Lett., 70 (1993), p. 2742. doi: 10.1103/PhysRevLett.70.2742.

[7]

C. M. Chen and F. C. Mackintosh, Theory of modulated phases in lipid bilayers and liquid crystal films, Phys. Rev. E, 53 (1996), 4933-4943. doi: 10.1103/PhysRevE.53.4933.

[8]

J. Chen and T. Lubensky, Landau-Ginzburg mean-field theory for the nematic to smectic-C and nematic to smectic-A phase transitions, Phys. Rev. A, 14 (1976), p. 1202. doi: 10.1103/PhysRevA.14.1202.

[9]

D. A. Coleman, J. Fernsler, N. Chattham, M. Nakata, Y. Takanishi, E. Köblova, D. R. Link, R. F. Shao, W. G. Jang, J. E. Maclennan, O. Mondainn-Monval, C. Boyer, W. Weissflog, G. Petzel, L. C. Chien, J. Zasadzinski, J. Watanabe, D. M. Walba, H. Takezoe and N. A. Clark, Polarization-Modulated liquid crystal phases, Science, 301 (2003), 1204-1211. doi: 10.1126/science.1084956.

[10]

P. G. de Gennes, An anology between superconductivity and smectic-A, Solid State Commun., 10 (1972), 753-756.

[11]

P. G. de Gennes and J. Prost, The Physics of Liquid Crystals, Clarendon Press, Oxford, 1993.

[12]

R. De Vita and I. W. Stewart, Influence of alignnment of smectic A liquid crystals with surface pretilt, J. Phys.: Condensed Matter, 20 (2008), 1-9.

[13]

G. B. Folland, Real Analysis, John Wiley $&$ Sons, Inc., 1984.

[14]

V. Girault and P. Raviart, Finite Element Methods for Navier Stokes Equations, Springer-Verlag, Berlin, 1986. doi: 10.1007/978-3-642-61623-5.

[15]

A. E. Jacobs, G. Goldner and D. Mukamel, Modulated structures in tilt chiral smectic films, Phys. Rev. A, 45 (1992), 5783-5788. doi: 10.1103/PhysRevA.45.5783.

[16]

A. Jákli, C. Bailey and J. Harden, Thermotropic Liquid Crystals, Springer, 2007.

[17]

S. Joo and D. Phillips, Chiral nematic toward smectic liquid crystals, Comm. Math Phys., 269 (2007), 369-399. doi: 10.1007/s00220-006-0132-z.

[18]

S. Kralj and T. Sluckin, Landau-de Gennes theory of the chevron structure in a smectic-A liquid crystal, Phys. Rev. E, 50 (1994), p. 2940. doi: 10.1103/PhysRevE.50.2940.

[19]

S. T. Lagerwall, Ferroelectric and Antiferroelectric Liquid Crystals, Wiley-VCH, 1999.

[20]

T. Lubensky and S. Renn, Twist-grain-boundary phases near the nematic-smectic-A-smectic-C point in liquid crystals, Phys. Rev. E, 41 (1990), p. 4392. doi: 10.1103/PhysRevA.41.4392.

[21]

I. Luk'yanchuk, Phase transition between the cholesteric and twist grain boundary C phases, Phys. Rev. E, 57 (1994), 574-581. doi: 10.1103/PhysRevE.57.574.

[22]

I. Muševič, R. Blinc and B. Žekš, The Physics of Ferroelectric and Antiferroelectric Liquid Crystals, World-Scientific, Singapore, New Jersey, London, Hong Kong, 2000.

[23]

M. A. Osipov and S. A. Pikin, Dipolar and quadrapolar ordering in ferroelectric liquid crystals, J. Phys. II France, 5 (1995), 1223-1240.

[24]

J. Park and M. C. Calderer, Analysis of nonlocal electrostatic effects in chiral smectic c liquid crystals, SIAM J. Appl. Math., 66 (2006), 2107-2126. doi: 10.1137/050641120.

[25]

S. Renn, Multicritical behavior of abrikosov vortex lattices near the cholesteric - smectic A - smectic C* point, Phys. Rev. A, 45 (1992), p. 953. doi: 10.1103/PhysRevA.45.953.

[26]

A. Shalaginov, L. Hazelwood and T. Sluckin, Dynamics of chevron formation, Phys. Rev. E, 58 (1998), p. 7455.

[27]

M. Slavinec, S. Kralj, S. Zumer and T. Sluckin, Surface depinning of smectic-A edge dislocations, Phys. Rev. E, 63 (2001), p. 031705. doi: 10.1103/PhysRevE.63.031705.

[28]

N. Vaupotič and M. Čopič, Effect of spontaneous polarization and polar surface anchoring on the director and layer structure in surface stabilized liquid crystal cells, Phys. Rev. E, 68 (2003), p. 061705.

[29]

N. Vaupotič, M. Čopič, E. Gorecka and D. Pociecha, Modulated structures in bent-core liquid crystals: Two faces of one phase, Phys. Rev. Lett., 98 (2007), p. 247802.

[30]

N. Vaupotič, V. Grubelnik and M. Čopič, Influence of an external field on structure in surface-stabilized smectic-C chevron cells, Phys. Rev. E, 62 (2000), p. 2317.

[31]

N. Vaupotič, S. Kralj, M. Čopič and T. Sluckin, Landau-de Gennes theory of the chevron structure in a smectic liquid crystal, Phys. Rev. E, 54 (1996), p. 3783.

show all references

References:
[1]

C. Bailey, E. C. Gartland and A. Jákli, Structure and stability of bent core liquid crystal fibers, Phys. Rev. E, 75 (2007), 031701. doi: 10.1103/PhysRevE.75.031701.

[2]

P. Bauman, M. C. Calderer, C. Liu and D. Phillips, The phase transition between nematic and smectic A* liquid crystals, Arch. Rational Mech. Anal., 165 (2002), 161-186. doi: 10.1007/s00205-002-0223-8.

[3]

P. Bauman and D. Phillips, Stability of bent core liquid crystal fibers, Molecular Crystals and Liquid Crystals Journal, 510 (2009), 1135-1145.

[4]

H. R. Brand, P. E. Cladis and H. Pleiner, Fluid biaxial banana smectics: Symmetry at work, Liquid Crystal Today, 9 (1999), 1-10.

[5]

H. R. Brand, P. E. Claids and H. Pleiner, Macroscopic properties of smectic $C_G$ liquid crystals, Eur. Phys. J. B, 6 (1998), 347-353.

[6]

M. Cagnon and G. Durand, Positional anchoring of smectic liquid crystals, Phys. Rev. Lett., 70 (1993), p. 2742. doi: 10.1103/PhysRevLett.70.2742.

[7]

C. M. Chen and F. C. Mackintosh, Theory of modulated phases in lipid bilayers and liquid crystal films, Phys. Rev. E, 53 (1996), 4933-4943. doi: 10.1103/PhysRevE.53.4933.

[8]

J. Chen and T. Lubensky, Landau-Ginzburg mean-field theory for the nematic to smectic-C and nematic to smectic-A phase transitions, Phys. Rev. A, 14 (1976), p. 1202. doi: 10.1103/PhysRevA.14.1202.

[9]

D. A. Coleman, J. Fernsler, N. Chattham, M. Nakata, Y. Takanishi, E. Köblova, D. R. Link, R. F. Shao, W. G. Jang, J. E. Maclennan, O. Mondainn-Monval, C. Boyer, W. Weissflog, G. Petzel, L. C. Chien, J. Zasadzinski, J. Watanabe, D. M. Walba, H. Takezoe and N. A. Clark, Polarization-Modulated liquid crystal phases, Science, 301 (2003), 1204-1211. doi: 10.1126/science.1084956.

[10]

P. G. de Gennes, An anology between superconductivity and smectic-A, Solid State Commun., 10 (1972), 753-756.

[11]

P. G. de Gennes and J. Prost, The Physics of Liquid Crystals, Clarendon Press, Oxford, 1993.

[12]

R. De Vita and I. W. Stewart, Influence of alignnment of smectic A liquid crystals with surface pretilt, J. Phys.: Condensed Matter, 20 (2008), 1-9.

[13]

G. B. Folland, Real Analysis, John Wiley $&$ Sons, Inc., 1984.

[14]

V. Girault and P. Raviart, Finite Element Methods for Navier Stokes Equations, Springer-Verlag, Berlin, 1986. doi: 10.1007/978-3-642-61623-5.

[15]

A. E. Jacobs, G. Goldner and D. Mukamel, Modulated structures in tilt chiral smectic films, Phys. Rev. A, 45 (1992), 5783-5788. doi: 10.1103/PhysRevA.45.5783.

[16]

A. Jákli, C. Bailey and J. Harden, Thermotropic Liquid Crystals, Springer, 2007.

[17]

S. Joo and D. Phillips, Chiral nematic toward smectic liquid crystals, Comm. Math Phys., 269 (2007), 369-399. doi: 10.1007/s00220-006-0132-z.

[18]

S. Kralj and T. Sluckin, Landau-de Gennes theory of the chevron structure in a smectic-A liquid crystal, Phys. Rev. E, 50 (1994), p. 2940. doi: 10.1103/PhysRevE.50.2940.

[19]

S. T. Lagerwall, Ferroelectric and Antiferroelectric Liquid Crystals, Wiley-VCH, 1999.

[20]

T. Lubensky and S. Renn, Twist-grain-boundary phases near the nematic-smectic-A-smectic-C point in liquid crystals, Phys. Rev. E, 41 (1990), p. 4392. doi: 10.1103/PhysRevA.41.4392.

[21]

I. Luk'yanchuk, Phase transition between the cholesteric and twist grain boundary C phases, Phys. Rev. E, 57 (1994), 574-581. doi: 10.1103/PhysRevE.57.574.

[22]

I. Muševič, R. Blinc and B. Žekš, The Physics of Ferroelectric and Antiferroelectric Liquid Crystals, World-Scientific, Singapore, New Jersey, London, Hong Kong, 2000.

[23]

M. A. Osipov and S. A. Pikin, Dipolar and quadrapolar ordering in ferroelectric liquid crystals, J. Phys. II France, 5 (1995), 1223-1240.

[24]

J. Park and M. C. Calderer, Analysis of nonlocal electrostatic effects in chiral smectic c liquid crystals, SIAM J. Appl. Math., 66 (2006), 2107-2126. doi: 10.1137/050641120.

[25]

S. Renn, Multicritical behavior of abrikosov vortex lattices near the cholesteric - smectic A - smectic C* point, Phys. Rev. A, 45 (1992), p. 953. doi: 10.1103/PhysRevA.45.953.

[26]

A. Shalaginov, L. Hazelwood and T. Sluckin, Dynamics of chevron formation, Phys. Rev. E, 58 (1998), p. 7455.

[27]

M. Slavinec, S. Kralj, S. Zumer and T. Sluckin, Surface depinning of smectic-A edge dislocations, Phys. Rev. E, 63 (2001), p. 031705. doi: 10.1103/PhysRevE.63.031705.

[28]

N. Vaupotič and M. Čopič, Effect of spontaneous polarization and polar surface anchoring on the director and layer structure in surface stabilized liquid crystal cells, Phys. Rev. E, 68 (2003), p. 061705.

[29]

N. Vaupotič, M. Čopič, E. Gorecka and D. Pociecha, Modulated structures in bent-core liquid crystals: Two faces of one phase, Phys. Rev. Lett., 98 (2007), p. 247802.

[30]

N. Vaupotič, V. Grubelnik and M. Čopič, Influence of an external field on structure in surface-stabilized smectic-C chevron cells, Phys. Rev. E, 62 (2000), p. 2317.

[31]

N. Vaupotič, S. Kralj, M. Čopič and T. Sluckin, Landau-de Gennes theory of the chevron structure in a smectic liquid crystal, Phys. Rev. E, 54 (1996), p. 3783.

[1]

Felix Sadyrbaev. Nonlinear boundary value problems of the calculus of variations. Conference Publications, 2003, 2003 (Special) : 760-770. doi: 10.3934/proc.2003.2003.760

[2]

Xiuqing Wang, Yuming Qin, Alain Miranville. Approximation of the trajectory attractor of the 3D smectic-A liquid crystal flow equations. Communications on Pure and Applied Analysis, 2020, 19 (7) : 3805-3827. doi: 10.3934/cpaa.2020168

[3]

Gisella Croce, Nikos Katzourakis, Giovanni Pisante. $\mathcal{D}$-solutions to the system of vectorial Calculus of Variations in $L^∞$ via the singular value problem. Discrete and Continuous Dynamical Systems, 2017, 37 (12) : 6165-6181. doi: 10.3934/dcds.2017266

[4]

Nikos Katzourakis. Nonuniqueness in vector-valued calculus of variations in $L^\infty$ and some Linear elliptic systems. Communications on Pure and Applied Analysis, 2015, 14 (1) : 313-327. doi: 10.3934/cpaa.2015.14.313

[5]

Nikos Katzourakis. Corrigendum to the paper: Nonuniqueness in Vector-Valued Calculus of Variations in $ L^\infty $ and some Linear Elliptic Systems. Communications on Pure and Applied Analysis, 2019, 18 (4) : 2197-2198. doi: 10.3934/cpaa.2019098

[6]

Angelo Favini, Rabah Labbas, Stéphane Maingot, Maëlis Meisner. Boundary value problem for elliptic differential equations in non-commutative cases. Discrete and Continuous Dynamical Systems, 2013, 33 (11&12) : 4967-4990. doi: 10.3934/dcds.2013.33.4967

[7]

Blanca Climent-Ezquerra, Francisco Guillén-González. Global in time solution and time-periodicity for a smectic-A liquid crystal model. Communications on Pure and Applied Analysis, 2010, 9 (6) : 1473-1493. doi: 10.3934/cpaa.2010.9.1473

[8]

Qiumei Huang, Xiaofeng Yang, Xiaoming He. Numerical approximations for a smectic-A liquid crystal flow model: First-order, linear, decoupled and energy stable schemes. Discrete and Continuous Dynamical Systems - B, 2018, 23 (6) : 2177-2192. doi: 10.3934/dcdsb.2018230

[9]

Agnieszka B. Malinowska, Delfim F. M. Torres. Euler-Lagrange equations for composition functionals in calculus of variations on time scales. Discrete and Continuous Dynamical Systems, 2011, 29 (2) : 577-593. doi: 10.3934/dcds.2011.29.577

[10]

Yuning Liu, Wei Wang. On the initial boundary value problem of a Navier-Stokes/$Q$-tensor model for liquid crystals. Discrete and Continuous Dynamical Systems - B, 2018, 23 (9) : 3879-3899. doi: 10.3934/dcdsb.2018115

[11]

Chun Liu, Jie Shen. On liquid crystal flows with free-slip boundary conditions. Discrete and Continuous Dynamical Systems, 2001, 7 (2) : 307-318. doi: 10.3934/dcds.2001.7.307

[12]

Bastian Gebauer, Nuutti Hyvönen. Factorization method and inclusions of mixed type in an inverse elliptic boundary value problem. Inverse Problems and Imaging, 2008, 2 (3) : 355-372. doi: 10.3934/ipi.2008.2.355

[13]

Matthias Eller, Daniel Toundykov. Carleman estimates for elliptic boundary value problems with applications to the stablization of hyperbolic systems. Evolution Equations and Control Theory, 2012, 1 (2) : 271-296. doi: 10.3934/eect.2012.1.271

[14]

Vaibhav Mehandiratta, Mani Mehra, Günter Leugering. Existence results and stability analysis for a nonlinear fractional boundary value problem on a circular ring with an attached edge : A study of fractional calculus on metric graph. Networks and Heterogeneous Media, 2021, 16 (2) : 155-185. doi: 10.3934/nhm.2021003

[15]

Bernard Dacorogna, Giovanni Pisante, Ana Margarida Ribeiro. On non quasiconvex problems of the calculus of variations. Discrete and Continuous Dynamical Systems, 2005, 13 (4) : 961-983. doi: 10.3934/dcds.2005.13.961

[16]

Daniel Faraco, Jan Kristensen. Compactness versus regularity in the calculus of variations. Discrete and Continuous Dynamical Systems - B, 2012, 17 (2) : 473-485. doi: 10.3934/dcdsb.2012.17.473

[17]

Ioan Bucataru, Matias F. Dahl. Semi-basic 1-forms and Helmholtz conditions for the inverse problem of the calculus of variations. Journal of Geometric Mechanics, 2009, 1 (2) : 159-180. doi: 10.3934/jgm.2009.1.159

[18]

Ivar Ekeland. From Frank Ramsey to René Thom: A classical problem in the calculus of variations leading to an implicit differential equation. Discrete and Continuous Dynamical Systems, 2010, 28 (3) : 1101-1119. doi: 10.3934/dcds.2010.28.1101

[19]

Carlos J. García-Cervera, Sookyung Joo. Reorientation of smectic a liquid crystals by magnetic fields. Discrete and Continuous Dynamical Systems - B, 2015, 20 (7) : 1983-2000. doi: 10.3934/dcdsb.2015.20.1983

[20]

Corentin Audiard. On the non-homogeneous boundary value problem for Schrödinger equations. Discrete and Continuous Dynamical Systems, 2013, 33 (9) : 3861-3884. doi: 10.3934/dcds.2013.33.3861

2020 Impact Factor: 2.425

Metrics

  • PDF downloads (106)
  • HTML views (0)
  • Cited by (4)

Other articles
by authors

[Back to Top]