April  2015, 8(2): 259-282. doi: 10.3934/dcdss.2015.8.259

Energy-minimizing nematic elastomers

1. 

Department of Mathematics, Purdue University, West Lafayette, IN 47906

2. 

Franklin W. Olin College of Engineering, Needham, MA 12492, United States

Received  May 2013 Revised  November 2013 Published  July 2014

We prove weak lower semi-continuity and existence of energy-minimizers for a free energy describing stable deformations and the corresponding director configuration of an incompressible nematic liquid-crystal elastomer subject to physically realistic boundary conditions. The energy is a sum of the trace formula developed by Warner, Terentjev and Bladon (coupling the deformation gradient and the director field) and the Landau-de Gennes energy in terms of the gradient of the director field and the bulk term for the director with coefficients depending on temperature. A key step in our analysis is to prove that the energy density has a convex extension to non-unit length director fields. Our results apply to the setting of physical experiments in which a thin incompressible elastomer in $\mathbb{R}^3$ is clamped on its sides and stretched perpendicular to its initial director field, resulting in shape-changes and director re-orientation.
Citation: Patricia Bauman, Andrea C. Rubiano. Energy-minimizing nematic elastomers. Discrete and Continuous Dynamical Systems - S, 2015, 8 (2) : 259-282. doi: 10.3934/dcdss.2015.8.259
References:
[1]

E. Acerbi and N. Fusco, Semicontinuity problems in the calculus of variations, Arch. for Rat. Mech. and Anal., 86 (1984), 125-145. doi: 10.1007/BF00275731.

[2]

D. Anderson, D. Carlson and E. Fried, A continuum-mechanical theory for nematic elastomers, J. Elasticity, 56 (1999), 33-58. doi: 10.1023/A:1007647913363.

[3]

J. M. Ball and F. Murat, $W^{1,p}$-quasiconvexity and variational problems for multiple integrals, J. Functional Analysis, 58 (1984), 225-253. doi: 10.1016/0022-1236(84)90041-7.

[4]

P. Bladon, E. Terentjev and M. Warner, Transitions and Instabilities in liquid-crystal elastomers, Phys. Rev. E, (Rapid Comm.), 47 (1993), 3838.

[5]

P. Bladon, E. Terentjev and M. Warner, Soft elasticity- deformation without resistance in liquid crystal elastomers, Journal de Physique II, 4 (1993), 93-102.

[6]

P. Bladon, E. Terentjev and M. Warner, Deformation-induced orientational transitions in liquid crystal elastomer, J. Phys. II France, 4 (1994), 75-91.

[7]

M. C. Calderer and C. Luo, Numerical study of liquid crystal elastomers in a mixed finite element method, European J. Appl. Math, 23 (2012), 121-154. doi: 10.1017/S0956792511000313.

[8]

P. Cesana and A. DeSimone, Strain-order coupling in nematic elastomers: Equilibrium configurations, Math. Models Methods Appl. Sci., 19 (2009), 601-630. doi: 10.1142/S0218202509003541.

[9]

p. Cesana and A. DeSimone, Quasiconvex envelopes of energies for the nematic elastomers in the small strain regime and applications, J. Mech. Phys., 59 (2011), 787-803. doi: 10.1016/j.jmps.2011.01.007.

[10]

S. Conti, A. DeSimone and G. Dolzmann, Semisoft elasticity and director reorientation in stretched sheets of nematic elastomers, Physical Review E., 66 (2002), 061710.

[11]

S. Conti, A. DeSimone and G. Dolzmann, Soft elastic response of stretched sheets of nematic elastomers: A numerical study, Journal of Mechanics and Physics of Solids, 50 (2002), 1431-1451. doi: 10.1016/S0022-5096(01)00120-X.

[12]

A. DeSimone and G. Dolzmann, Macroscopic response of nematic elastomers via relaxation of a class of SO(3)-invariant energies, Arch. Rational Mech. Anal., 161 (2002), 181-204. doi: 10.1007/s002050100174.

[13]

A. DeSimone and G. Dolzmann, Material instabilities in nematic elastomers, Phys. D, 136 (2000), 175-191. doi: 10.1016/S0167-2789(99)00153-0.

[14]

A. DeSimone and G. Dolzmann, Stripe-domains in nematic elastomers: Old and new, in Modeling of Soft Matter, IMA Vol. Math. Appl., 141, Springer, New York, 2005, 189-203. doi: 10.1007/0-387-32153-5_8.

[15]

H. Finkelmann, I. Kundler, E. M. Terejtev and M. Warner, Critical Stripe-Domain Instability of Nematic Elastomers, J. Phys. II France, (1997), 1059-1069.

[16]

I. Kundler and H. Finkelmann, Strain-induced director reorientation in nematic liquid single crystal elastomers, Macromolecular Rapid Communications, 16 (1995), 679-686.

[17]

S. Müller, T. Qi and B. S. Yan, On a new class of elastic deformations not allowing for cavitation, Annales de l'I.H.P., Section C, 11 (1994), 217-243.

[18]

V. Sverak, Regularity properties of deformations with finite energy, Arch. Rat. Mech. Anal., 100 (1988), 105-127. doi: 10.1007/BF00282200.

[19]

Terentjev, M. Warner and G. C. Verwey, Non-uniform deformations in liquid crystal elastomers, J. Phys. II France, 6 (1996), 1049-1060.

[20]

M. Verwey, M. Warner and E. M. Terenjtev, Elastic instability and stripe domains in liquid crystalline elastomers, J. Phys. II France, 6 (1996), 1273-1290.

[21]

S. K. Vodopyanov and V. M. Goldstein, Quasiconformal mappings and spaces of functions with generalized first derivatives, Siberian math. J., 12 (1977), 515-531.

[22]

M. Warner and E. M. Terenjtev, Liquid Crystal Elastomers, Oxford University Press, 2003.

[23]

E. Zubarev, S. Kuptsov, T. Yuranova, R. Talroze and H. Finkelmann, Monodomain liquid crystalline networks: Reorientation mechanism from uniform to stripe domains, Liquid Crystals, 26 (1999), 1531-1540.

show all references

References:
[1]

E. Acerbi and N. Fusco, Semicontinuity problems in the calculus of variations, Arch. for Rat. Mech. and Anal., 86 (1984), 125-145. doi: 10.1007/BF00275731.

[2]

D. Anderson, D. Carlson and E. Fried, A continuum-mechanical theory for nematic elastomers, J. Elasticity, 56 (1999), 33-58. doi: 10.1023/A:1007647913363.

[3]

J. M. Ball and F. Murat, $W^{1,p}$-quasiconvexity and variational problems for multiple integrals, J. Functional Analysis, 58 (1984), 225-253. doi: 10.1016/0022-1236(84)90041-7.

[4]

P. Bladon, E. Terentjev and M. Warner, Transitions and Instabilities in liquid-crystal elastomers, Phys. Rev. E, (Rapid Comm.), 47 (1993), 3838.

[5]

P. Bladon, E. Terentjev and M. Warner, Soft elasticity- deformation without resistance in liquid crystal elastomers, Journal de Physique II, 4 (1993), 93-102.

[6]

P. Bladon, E. Terentjev and M. Warner, Deformation-induced orientational transitions in liquid crystal elastomer, J. Phys. II France, 4 (1994), 75-91.

[7]

M. C. Calderer and C. Luo, Numerical study of liquid crystal elastomers in a mixed finite element method, European J. Appl. Math, 23 (2012), 121-154. doi: 10.1017/S0956792511000313.

[8]

P. Cesana and A. DeSimone, Strain-order coupling in nematic elastomers: Equilibrium configurations, Math. Models Methods Appl. Sci., 19 (2009), 601-630. doi: 10.1142/S0218202509003541.

[9]

p. Cesana and A. DeSimone, Quasiconvex envelopes of energies for the nematic elastomers in the small strain regime and applications, J. Mech. Phys., 59 (2011), 787-803. doi: 10.1016/j.jmps.2011.01.007.

[10]

S. Conti, A. DeSimone and G. Dolzmann, Semisoft elasticity and director reorientation in stretched sheets of nematic elastomers, Physical Review E., 66 (2002), 061710.

[11]

S. Conti, A. DeSimone and G. Dolzmann, Soft elastic response of stretched sheets of nematic elastomers: A numerical study, Journal of Mechanics and Physics of Solids, 50 (2002), 1431-1451. doi: 10.1016/S0022-5096(01)00120-X.

[12]

A. DeSimone and G. Dolzmann, Macroscopic response of nematic elastomers via relaxation of a class of SO(3)-invariant energies, Arch. Rational Mech. Anal., 161 (2002), 181-204. doi: 10.1007/s002050100174.

[13]

A. DeSimone and G. Dolzmann, Material instabilities in nematic elastomers, Phys. D, 136 (2000), 175-191. doi: 10.1016/S0167-2789(99)00153-0.

[14]

A. DeSimone and G. Dolzmann, Stripe-domains in nematic elastomers: Old and new, in Modeling of Soft Matter, IMA Vol. Math. Appl., 141, Springer, New York, 2005, 189-203. doi: 10.1007/0-387-32153-5_8.

[15]

H. Finkelmann, I. Kundler, E. M. Terejtev and M. Warner, Critical Stripe-Domain Instability of Nematic Elastomers, J. Phys. II France, (1997), 1059-1069.

[16]

I. Kundler and H. Finkelmann, Strain-induced director reorientation in nematic liquid single crystal elastomers, Macromolecular Rapid Communications, 16 (1995), 679-686.

[17]

S. Müller, T. Qi and B. S. Yan, On a new class of elastic deformations not allowing for cavitation, Annales de l'I.H.P., Section C, 11 (1994), 217-243.

[18]

V. Sverak, Regularity properties of deformations with finite energy, Arch. Rat. Mech. Anal., 100 (1988), 105-127. doi: 10.1007/BF00282200.

[19]

Terentjev, M. Warner and G. C. Verwey, Non-uniform deformations in liquid crystal elastomers, J. Phys. II France, 6 (1996), 1049-1060.

[20]

M. Verwey, M. Warner and E. M. Terenjtev, Elastic instability and stripe domains in liquid crystalline elastomers, J. Phys. II France, 6 (1996), 1273-1290.

[21]

S. K. Vodopyanov and V. M. Goldstein, Quasiconformal mappings and spaces of functions with generalized first derivatives, Siberian math. J., 12 (1977), 515-531.

[22]

M. Warner and E. M. Terenjtev, Liquid Crystal Elastomers, Oxford University Press, 2003.

[23]

E. Zubarev, S. Kuptsov, T. Yuranova, R. Talroze and H. Finkelmann, Monodomain liquid crystalline networks: Reorientation mechanism from uniform to stripe domains, Liquid Crystals, 26 (1999), 1531-1540.

[1]

Mauro Fabrizio, Claudio Giorgi, Angelo Morro. Isotropic-nematic phase transitions in liquid crystals. Discrete and Continuous Dynamical Systems - S, 2011, 4 (3) : 565-579. doi: 10.3934/dcdss.2011.4.565

[2]

Xiaoming Wang. Upper semi-continuity of stationary statistical properties of dissipative systems. Discrete and Continuous Dynamical Systems, 2009, 23 (1&2) : 521-540. doi: 10.3934/dcds.2009.23.521

[3]

Marco Cicalese, Antonio DeSimone, Caterina Ida Zeppieri. Discrete-to-continuum limits for strain-alignment-coupled systems: Magnetostrictive solids, ferroelectric crystals and nematic elastomers. Networks and Heterogeneous Media, 2009, 4 (4) : 667-708. doi: 10.3934/nhm.2009.4.667

[4]

M. Silhavý. Ideally soft nematic elastomers. Networks and Heterogeneous Media, 2007, 2 (2) : 279-311. doi: 10.3934/nhm.2007.2.279

[5]

Boling Guo, Yongqian Han, Guoli Zhou. Random attractor for the 2D stochastic nematic liquid crystals flows. Communications on Pure and Applied Analysis, 2019, 18 (5) : 2349-2376. doi: 10.3934/cpaa.2019106

[6]

Geng Chen, Ping Zhang, Yuxi Zheng. Energy conservative solutions to a nonlinear wave system of nematic liquid crystals. Communications on Pure and Applied Analysis, 2013, 12 (3) : 1445-1468. doi: 10.3934/cpaa.2013.12.1445

[7]

Zdzisław Brzeźniak, Erika Hausenblas, Paul André Razafimandimby. A note on the stochastic Ericksen-Leslie equations for nematic liquid crystals. Discrete and Continuous Dynamical Systems - B, 2019, 24 (11) : 5785-5802. doi: 10.3934/dcdsb.2019106

[8]

Tomás Caraballo, Cecilia Cavaterra. A 3D isothermal model for nematic liquid crystals with delay terms. Discrete and Continuous Dynamical Systems - S, 2022, 15 (8) : 2117-2133. doi: 10.3934/dcdss.2022097

[9]

Pengyu Chen, Xuping Zhang. Upper semi-continuity of attractors for non-autonomous fractional stochastic parabolic equations with delay. Discrete and Continuous Dynamical Systems - B, 2021, 26 (8) : 4325-4357. doi: 10.3934/dcdsb.2020290

[10]

Apala Majumdar. The Landau-de Gennes theory of nematic liquid crystals: Uniaxiality versus Biaxiality. Communications on Pure and Applied Analysis, 2012, 11 (3) : 1303-1337. doi: 10.3934/cpaa.2012.11.1303

[11]

Jihong Zhao, Qiao Liu, Shangbin Cui. Global existence and stability for a hydrodynamic system in the nematic liquid crystal flows. Communications on Pure and Applied Analysis, 2013, 12 (1) : 341-357. doi: 10.3934/cpaa.2013.12.341

[12]

Chun Liu. Dynamic theory for incompressible Smectic-A liquid crystals: Existence and regularity. Discrete and Continuous Dynamical Systems, 2000, 6 (3) : 591-608. doi: 10.3934/dcds.2000.6.591

[13]

Patricia Bauman, Daniel Phillips, Jinhae Park. Existence of solutions to boundary value problems for smectic liquid crystals. Discrete and Continuous Dynamical Systems - S, 2015, 8 (2) : 243-257. doi: 10.3934/dcdss.2015.8.243

[14]

Ioan Bucataru, Matias F. Dahl. Semi-basic 1-forms and Helmholtz conditions for the inverse problem of the calculus of variations. Journal of Geometric Mechanics, 2009, 1 (2) : 159-180. doi: 10.3934/jgm.2009.1.159

[15]

Luigi C. Berselli, Jishan Fan. Logarithmic and improved regularity criteria for the 3D nematic liquid crystals models, Boussinesq system, and MHD equations in a bounded domain. Communications on Pure and Applied Analysis, 2015, 14 (2) : 637-655. doi: 10.3934/cpaa.2015.14.637

[16]

Elisa Gorla, Maike Massierer. Index calculus in the trace zero variety. Advances in Mathematics of Communications, 2015, 9 (4) : 515-539. doi: 10.3934/amc.2015.9.515

[17]

Bernard Dacorogna, Giovanni Pisante, Ana Margarida Ribeiro. On non quasiconvex problems of the calculus of variations. Discrete and Continuous Dynamical Systems, 2005, 13 (4) : 961-983. doi: 10.3934/dcds.2005.13.961

[18]

Daniel Faraco, Jan Kristensen. Compactness versus regularity in the calculus of variations. Discrete and Continuous Dynamical Systems - B, 2012, 17 (2) : 473-485. doi: 10.3934/dcdsb.2012.17.473

[19]

Xiaohui Zhang, Xuping Zhang. Upper semi-continuity of non-autonomous fractional stochastic $ p $-Laplacian equation driven by additive noise on $ \mathbb{R}^n $. Discrete and Continuous Dynamical Systems - B, 2022  doi: 10.3934/dcdsb.2022081

[20]

Yi-hang Hao, Xian-Gao Liu. The existence and blow-up criterion of liquid crystals system in critical Besov space. Communications on Pure and Applied Analysis, 2014, 13 (1) : 225-236. doi: 10.3934/cpaa.2014.13.225

2021 Impact Factor: 1.865

Metrics

  • PDF downloads (70)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]