Advanced Search
Article Contents
Article Contents

Deterministic homogenization for media with barriers

Abstract Related Papers Cited by
  • Averaging coefficient in a second order elliptic equation is a well known and important model problem. Additional to non-periodic rapid oscillations, the coefficient may contain barriers and channels - long and narrow bodies with low or high values of the coefficient. When the length of such structures is comparable with the problem size - there is no scale separation.
        In this article we consider coefficients with barriers. We show how the averaged coefficient may be inadequate near the barriers and propose a generalization which can detect the potential problems and improve the accuracy of the averaged solution.
    Mathematics Subject Classification: 35B27, 35B40, 35J25, 80M40, 76M50, 65N12.


    \begin{equation} \\ \end{equation}
  • [1]

    G. Allaire, Homogenization and two-scale convergence, SIAM J. Math. Anal., 23 (1992), 1482-1518.doi: 10.1137/0523084.


    A. Bensoussan, J. L. Lions and G. Papanicolaou, Asymptotic Analysis for Periodic Structure, North Holland, Amsterdam, 1978.


    Y. Capdeville and J. J. Marigo, Second order homogenization of the elastic wave equation for non-periodic layered media, Geophysical Journal International, 170 (2007), 823-838.doi: 10.1111/j.1365-246X.2007.03462.x.


    Y. Chen, L. J. Durlofsky, M. Gerritsen and X. H. Wen, A coupled local-global upscaling ap- proach for simulating flow in highly heterogeneous formations, Advances in Water Resources, 26 (2003), 1041-1060.doi: 10.1016/S0309-1708(03)00101-5.


    C. C. Chu, I. G. Graham and T. Y. Hou, A new multiscale finite element method for high-contrast elliptic interface problems, Math. Comput., 79 (2010), 1915-1955.doi: 10.1090/S0025-5718-2010-02372-5.


    L. J. Durlofsky, Numerical calculation of equivalent gridblock permeability tensors for heterogeneous porous media, Water Resources Research, 27 (1991), 699-708.doi: 10.1029/91WR00107.


    L. J. Durlofsky, Upscaling and gridding of fine scale geological models for flow simulation, Proceedings of the 8th International Forum on Reservoir Simulation in Stresa, Italy, 2005, 59 pp.


    Y. Efendiev, J. Galvis and T. Hou, Generalized multiscale finite element methods (GMsFEM), J. Comput. Phys., 251 (2013), 116-135.doi: 10.1016/j.jcp.2013.04.045.


    C. L. Farmer, Upscaling: A review, Numerical Methods in Fluids, 40 (2002), 63-78.doi: 10.1002/fld.267.


    H. Hajibeygi, G. Bonfigli, M. A. Hesse and P. Jenny, Iterative multiscale finite-volume method, Journal of Computational Physics, 227 (2008), 8604-8621.doi: 10.1016/j.jcp.2008.06.013.


    T. Y. Hou and X. H. Wu, A multiscale finite element method for elliptic problems in composite materials and porous media, Journal of Computational Physics, 134 (1997), 169-189.doi: 10.1006/jcph.1997.5682.


    V. Laptev and S. Belouettar, On averaging of the non-periodic conductivity coefficient using two-scale extension, PAMM, 5 (2005), 681-682.doi: 10.1002/pamm.200510316.


    V. Laptev, Two-scale extensions for non-periodic coefficients, preprint, arXiv:math/0512123.


    V. Laptev, On numerical averaging of the conductivity coefficient using two-scale extensions, preprint, arXiv:0710.2072.


    V. D. Laptev, Construction and practical use of two-scaled extensions for rapidly oscillating functions, Journal of Mathematical Sciences, 158 (2009), 211-218.doi: 10.1007/s10958-009-9384-4.


    V. Laptev, work in progress.


    G. Nguetseng, A general convergence result for a functional related to the theory of homogenization, SIAM Journal on Mathematical Analysis, 20 (1989), 608-623.doi: 10.1137/0520043.


    H. Owhadi and L. Zhang, Metric based up-scaling, preprint, arXiv:math/0505223.


    H. Owhadi and L. Zhang, Localized bases for finite dimensional homogenization approximations with non-separated scales and high-contrast, Multiscale Model. Simul., 9 (2011), 1373-1398.doi: 10.1137/100813968.


    X. H. Wen, L. J. Durlofsky and M. G. Edwards, Use of border regions for improved permeability upscaling, Mathematical Geology, 35 (2003), 521-547.doi: 10.1023/A:1026230617943.

  • 加载中

Article Metrics

HTML views() PDF downloads(57) Cited by(0)

Access History

Other Articles By Authors



    DownLoad:  Full-Size Img  PowerPoint