June  2015, 8(3): 389-417. doi: 10.3934/dcdss.2015.8.389

Detection, reconstruction, and characterization algorithms from noisy data in multistatic wave imaging

1. 

Department of Mathematics and Applications, Ecole Normale Supérieure, 45 Rue d'Ulm, 75005 Paris, France

2. 

Laboratoire de Probabilités et Modèles Aléatoires & Laboratoire Jacques-Louis Lions, Université Paris Diderot, 75205 Paris Cedex 13

3. 

Department of Mathematics, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139-4307, United States

Received  June 2013 Revised  January 2014 Published  October 2014

The detection, localization, and characterization of a collection of targets embedded in a medium is an important problem in multistatic wave imaging. The responses between each pair of source and receiver are collected and assembled in the form of a response matrix, known as the multi-static response matrix. When the data are corrupted by measurement or instrument noise, the structure of the response matrix is studied by using random matrix theory. It is shown how the targets can be efficiently detected, localized and characterized. Both the case of a collection of point reflectors in which the singular vectors have all the same form and the case of small-volume electromagnetic inclusions in which the singular vectors may have different forms depending on their magnetic or dielectric type are addressed.
Citation: Habib Ammari, Josselin Garnier, Vincent Jugnon. Detection, reconstruction, and characterization algorithms from noisy data in multistatic wave imaging. Discrete and Continuous Dynamical Systems - S, 2015, 8 (3) : 389-417. doi: 10.3934/dcdss.2015.8.389
References:
[1]

M. Alam, V. Cevher, J. H. McClellan, G. D. Larson, and W. R. Scott, Jr., Optimal maneuvering of seismic sensors for localization of subsurface targets, IEEE Trans. Geo. Remote Sensing, 45 (2007), 1247-1257. doi: 10.1109/TGRS.2007.894551.

[2]

H. Ammari, An Introduction to Mathematics of Emerging Biomedical Imaging, Mathematics & Applications, 62, Springer-Verlag, Berlin, 2008.

[3]

H. Ammari, P. Calmon and E. Iakovleva, Direct elastic imaging of a small inclusion, SIAM J. Imaging Sci., 1 (2008), 169-187. doi: 10.1137/070696076.

[4]

H. Ammari, J. Chen, Z. Chen, J. Garnier and D. Volokov, Target detection and characterization from electromagnetic induction data, J. Math. Pures Appl., 101 (2014), 54-75. doi: 10.1016/j.matpur.2013.05.002.

[5]

H. Ammari, P. Garapon, L. Guadarrama Bustos and H. Kang, Transient anomaly imaging by the acoustic radiation force, J. Diff. Equat., 249 (2010), 1579-1595. doi: 10.1016/j.jde.2010.07.012.

[6]

H. Ammari, J. Garnier, H. Kang, M. Lim and K. Sølna, Multistatic imaging of extended targets, SIAM J. Imag. Sci., 5 (2012), 564-600. doi: 10.1137/10080631X.

[7]

H. Ammari, J. Garnier and K. Sølna, A statistical approach to target detection and localization in the presence of noise, Waves Random Complex Media, 22 (2012), 40-65. doi: 10.1080/17455030.2010.532518.

[8]

H. Ammari, J. Garnier and K. Sølna, Limited view resolving power of linearized conductivity imaging from boundary measurements, SIAM J. Math. Anal., 45 (2013), 1704-1722. doi: 10.1137/120861849.

[9]

H. Ammari, J. Garnier and K. Sølna, Resolution and stability analysis in full-aperture, linearized conductivity and wave imaging, Proc. Amer. Math. Soc., 141 (2013), 3431-3446. doi: 10.1090/S0002-9939-2013-11590-X.

[10]

H. Ammari, J. Garnier, H. Kang, W. K. Park and K. Sølna, Imaging schemes for cracks and inclusions, SIAM J. Appl. Math., 71 (2011), 68-91. doi: 10.1137/100800130.

[11]

H. Ammari, E. Iakovleva and D. Lesselier, A MUSIC algorithm for locating small inclusions buried in a half-space from the scattering amplitude at a fixed frequency, Multiscale Model. Simul., 3 (2005), 597-628. doi: 10.1137/040610854.

[12]

H. Ammari, E. Iakovleva and D. Lesselier, Two numerical methods for recovering small inclusions from the scattering amplitude at a fixed frequency, SIAM J. Sci. Comput., 27 (2005), 130-158. doi: 10.1137/040612518.

[13]

H. Ammari, E. Iakovleva, D. Lesselier and G. Perrusson, A MUSIC-type electromagnetic imaging of a collection of small three-dimensional inclusions, SIAM J. Sci. Comput., 29 (2007), 674-709. doi: 10.1137/050640655.

[14]

H. Ammari and H. Kang, Reconstruction of Small Inhomogeneities from Boundary Measurements, Lecture Notes in Mathematics, Vol. 1846, Springer-Verlag, Berlin, 2004. doi: 10.1007/b98245.

[15]

H. Ammari and H. Kang, Polarization and Moment Tensors: with Applications to Inverse Problems and Effective Medium Theory, Applied Mathematical Sciences, 162, Springer-Verlag, New York, 2007.

[16]

H. Ammari, H. Kang, E. Kim and J.-Y. Lee, The generalized polarization tensors for resolved imaging. Part II: Shape and electromagnetic parameters reconstruction of an electromagnetic inclusion from multistatic measurements, Math. Comp., 81 (2012), 839-860. doi: 10.1090/S0025-5718-2011-02534-2.

[17]

H. Ammari, H. Kang, H. Lee and W. K. Park, Asymptotic imaging of perfectly conducting cracks, SIAM J. Sci. Comput., 32 (2010), 894-922. doi: 10.1137/090749013.

[18]

A. Aubry and A. Derode, Random matrix theory applied to acoustic backscattering and imaging in complex media, Phys. Rev. Lett., 102 (2009), 084301. doi: 10.1103/PhysRevLett.102.084301.

[19]

A. Aubry and A. Derode, Singular value distribution of the propagation matrix in random scattering media, Waves Random Complex Media, 20 (2010), 333-363. doi: 10.1080/17455030903499698.

[20]

A. Aubry and A. Derode, Detection and imaging in a random medium: A matrix method to overcome multiple scattering and aberration, J. Appl. Physics, 106 (2009), 044903. doi: 10.1063/1.3200962.

[21]

J. Baik and J. W. Silverstein, Eigenvalues of large sample covariance matrices of spiked population models, Journal of Multivariate Analysis, 97 (2006), 1382-1408. doi: 10.1016/j.jmva.2005.08.003.

[22]

G. Bao, S. Hou and P. Li, Inverse scattering by a continuation method with initial guesses from a direct imaging algorithm, J. Comp. Phys., 227 (2007), 755-762. doi: 10.1016/j.jcp.2007.08.020.

[23]

F. Benaych-Georges and R. R. Nadakuditi, The eigenvalues and eigenvectors of finite, low rank perturbations of large random matrices, Advances in Mathematics, 227 (2011), 494-521. doi: 10.1016/j.aim.2011.02.007.

[24]

J. Byrnes, Advances in Sensing with Security Applications, Springer-Verlag, Dordrecht, 2006. doi: 10.1007/1-4020-4295-7.

[25]

D. H. Chambers, Target characterization using time-reversal symmetry of wave propagation, Int. J. Modern Phys. B, 21 (2007), 3511-3555. doi: 10.1142/S0217979207037521.

[26]

D. H. Chambers and J. G. Berryman, Analysis of the time-reversal operator for a small spherical scatterer in an electromagnetic field, IEEE Trans. Antennas Propagat., 52 (2004), 1729-1738. doi: 10.1109/TAP.2004.831323.

[27]

D. H. Chambers and J. G. Berryman, Time-reversal analysis for scatterer characterization, Phys. Rev. Lett., 92 (2004), 023902. doi: 10.1103/PhysRevLett.92.023902.

[28]

A. J. Devaney, Time reversal imaging of obscured targets from multistatic data, IEEE Trans. Antennas Propagat., 523 (2005), 1600-1610. doi: 10.1109/TAP.2005.846723.

[29]

A. J. Devaney, E. A. Marengo and F. K. Gruber, Time-reversal-based imaging and inverse scattering of multiply scattering point targets, J. Acoust. Soc. Am., 118 (2005), 3129-3138. doi: 10.1121/1.2042987.

[30]

J. Garnier, Use of random matrix theory for target detection, localization, and reconstruction, in Proceedings of the Conference Mathematical and Statistical Methods for Imaging, (eds. H. Ammari, J. Garnier, H. Kang and K. Sølna), Contemporary Mathematics Series, American Mathematical Society, 548 (2011), 151-163. doi: 10.1090/conm/548/10832.

[31]

D. J. Hansen and M. S. Vogelius, High frequency perturbation formulas for the effect of small inhomogeneities, J. Phys.: Conf. Ser., 135 (2008), 012106. doi: 10.1088/1742-6596/135/1/012106.

[32]

R. A. Horn and C. R. Johnson, Matrix Analysis, Cambridge University Press, Cambridge, 1985. doi: 10.1017/CBO9780511810817.

[33]

I. M. Johnstone, On the distribution of the largest eigenvalue in principal components analysis, Ann. Statist., 29 (2001), 295-327. doi: 10.1214/aos/1009210543.

[34]

S. Lee, F. Zou and F. A. Wright, Convergence and prediction of principal component scores in high-dimensional settings, Ann. Stat., 38 (2010), 3605-3629. doi: 10.1214/10-AOS821.

[35]

J. G. Minonzio, D. Clorennec, A. Aubry, T. Folégot, T. Pélican, C. Prada, J. de Rosny and M. Fink, Application of the DORT method to the detection and characterization of two targets in a shallow water wave-guide, IEEE Oceans 2005 Eur., 2 (2005), 1001-1006. doi: 10.1109/OCEANSE.2005.1513193.

[36]

M. Oristaglio and H. Blok, Wavefield Imaging and Inversion in Electromagnetics and Acoustics, Cambridge University Press, 2004.

[37]

D. Paul, Asymptotics of sample eigenstructure for a large dimensional spiked covariance model, Statist. Sinica, 17 (2007), 1617-1642.

[38]

A. Shabalin and A. Nobel, Reconstruction of a low-rank matrix in the presence of Gaussian noise, Journal of Multivariate Analysis, 118 (2013), 67-76. doi: 10.1016/j.jmva.2013.03.005.

[39]

G. W. Stewart, Perturbation theory for the singular value decomposition, in SVD and Signal Processing, II: Algorithms, Analysis and Applications, Elsevier, 1990, pp. 99-109.

[40]

M. S. Vogelius and D. Volkov, Asymptotic formulas for perturbations in the electromagnetic fields due to the presence of inhomogeneities, Math. Model. Numer. Anal., 34 (2000), 723-748. doi: 10.1051/m2an:2000101.

[41]

D. Volkov, Numerical methods for locating small dielectric inhomogeneities, Wave Motion, 38 (2003), 189-206. doi: 10.1016/S0165-2125(03)00047-7.

[42]

P.-Å. Wedin, Perturbation bounds in connection with singular value decomposition, BIT Numerical Mathematics, 12 (1972), 99-111.

[43]

X. Yao, G. Bin, X. Luzhou, L. Jian and P. Stoica, Multistatic adaptive microwave imaging for early breast cancer detection, IEEE Trans. Biomedical Eng., 53 (2006), 1647-1657.

show all references

References:
[1]

M. Alam, V. Cevher, J. H. McClellan, G. D. Larson, and W. R. Scott, Jr., Optimal maneuvering of seismic sensors for localization of subsurface targets, IEEE Trans. Geo. Remote Sensing, 45 (2007), 1247-1257. doi: 10.1109/TGRS.2007.894551.

[2]

H. Ammari, An Introduction to Mathematics of Emerging Biomedical Imaging, Mathematics & Applications, 62, Springer-Verlag, Berlin, 2008.

[3]

H. Ammari, P. Calmon and E. Iakovleva, Direct elastic imaging of a small inclusion, SIAM J. Imaging Sci., 1 (2008), 169-187. doi: 10.1137/070696076.

[4]

H. Ammari, J. Chen, Z. Chen, J. Garnier and D. Volokov, Target detection and characterization from electromagnetic induction data, J. Math. Pures Appl., 101 (2014), 54-75. doi: 10.1016/j.matpur.2013.05.002.

[5]

H. Ammari, P. Garapon, L. Guadarrama Bustos and H. Kang, Transient anomaly imaging by the acoustic radiation force, J. Diff. Equat., 249 (2010), 1579-1595. doi: 10.1016/j.jde.2010.07.012.

[6]

H. Ammari, J. Garnier, H. Kang, M. Lim and K. Sølna, Multistatic imaging of extended targets, SIAM J. Imag. Sci., 5 (2012), 564-600. doi: 10.1137/10080631X.

[7]

H. Ammari, J. Garnier and K. Sølna, A statistical approach to target detection and localization in the presence of noise, Waves Random Complex Media, 22 (2012), 40-65. doi: 10.1080/17455030.2010.532518.

[8]

H. Ammari, J. Garnier and K. Sølna, Limited view resolving power of linearized conductivity imaging from boundary measurements, SIAM J. Math. Anal., 45 (2013), 1704-1722. doi: 10.1137/120861849.

[9]

H. Ammari, J. Garnier and K. Sølna, Resolution and stability analysis in full-aperture, linearized conductivity and wave imaging, Proc. Amer. Math. Soc., 141 (2013), 3431-3446. doi: 10.1090/S0002-9939-2013-11590-X.

[10]

H. Ammari, J. Garnier, H. Kang, W. K. Park and K. Sølna, Imaging schemes for cracks and inclusions, SIAM J. Appl. Math., 71 (2011), 68-91. doi: 10.1137/100800130.

[11]

H. Ammari, E. Iakovleva and D. Lesselier, A MUSIC algorithm for locating small inclusions buried in a half-space from the scattering amplitude at a fixed frequency, Multiscale Model. Simul., 3 (2005), 597-628. doi: 10.1137/040610854.

[12]

H. Ammari, E. Iakovleva and D. Lesselier, Two numerical methods for recovering small inclusions from the scattering amplitude at a fixed frequency, SIAM J. Sci. Comput., 27 (2005), 130-158. doi: 10.1137/040612518.

[13]

H. Ammari, E. Iakovleva, D. Lesselier and G. Perrusson, A MUSIC-type electromagnetic imaging of a collection of small three-dimensional inclusions, SIAM J. Sci. Comput., 29 (2007), 674-709. doi: 10.1137/050640655.

[14]

H. Ammari and H. Kang, Reconstruction of Small Inhomogeneities from Boundary Measurements, Lecture Notes in Mathematics, Vol. 1846, Springer-Verlag, Berlin, 2004. doi: 10.1007/b98245.

[15]

H. Ammari and H. Kang, Polarization and Moment Tensors: with Applications to Inverse Problems and Effective Medium Theory, Applied Mathematical Sciences, 162, Springer-Verlag, New York, 2007.

[16]

H. Ammari, H. Kang, E. Kim and J.-Y. Lee, The generalized polarization tensors for resolved imaging. Part II: Shape and electromagnetic parameters reconstruction of an electromagnetic inclusion from multistatic measurements, Math. Comp., 81 (2012), 839-860. doi: 10.1090/S0025-5718-2011-02534-2.

[17]

H. Ammari, H. Kang, H. Lee and W. K. Park, Asymptotic imaging of perfectly conducting cracks, SIAM J. Sci. Comput., 32 (2010), 894-922. doi: 10.1137/090749013.

[18]

A. Aubry and A. Derode, Random matrix theory applied to acoustic backscattering and imaging in complex media, Phys. Rev. Lett., 102 (2009), 084301. doi: 10.1103/PhysRevLett.102.084301.

[19]

A. Aubry and A. Derode, Singular value distribution of the propagation matrix in random scattering media, Waves Random Complex Media, 20 (2010), 333-363. doi: 10.1080/17455030903499698.

[20]

A. Aubry and A. Derode, Detection and imaging in a random medium: A matrix method to overcome multiple scattering and aberration, J. Appl. Physics, 106 (2009), 044903. doi: 10.1063/1.3200962.

[21]

J. Baik and J. W. Silverstein, Eigenvalues of large sample covariance matrices of spiked population models, Journal of Multivariate Analysis, 97 (2006), 1382-1408. doi: 10.1016/j.jmva.2005.08.003.

[22]

G. Bao, S. Hou and P. Li, Inverse scattering by a continuation method with initial guesses from a direct imaging algorithm, J. Comp. Phys., 227 (2007), 755-762. doi: 10.1016/j.jcp.2007.08.020.

[23]

F. Benaych-Georges and R. R. Nadakuditi, The eigenvalues and eigenvectors of finite, low rank perturbations of large random matrices, Advances in Mathematics, 227 (2011), 494-521. doi: 10.1016/j.aim.2011.02.007.

[24]

J. Byrnes, Advances in Sensing with Security Applications, Springer-Verlag, Dordrecht, 2006. doi: 10.1007/1-4020-4295-7.

[25]

D. H. Chambers, Target characterization using time-reversal symmetry of wave propagation, Int. J. Modern Phys. B, 21 (2007), 3511-3555. doi: 10.1142/S0217979207037521.

[26]

D. H. Chambers and J. G. Berryman, Analysis of the time-reversal operator for a small spherical scatterer in an electromagnetic field, IEEE Trans. Antennas Propagat., 52 (2004), 1729-1738. doi: 10.1109/TAP.2004.831323.

[27]

D. H. Chambers and J. G. Berryman, Time-reversal analysis for scatterer characterization, Phys. Rev. Lett., 92 (2004), 023902. doi: 10.1103/PhysRevLett.92.023902.

[28]

A. J. Devaney, Time reversal imaging of obscured targets from multistatic data, IEEE Trans. Antennas Propagat., 523 (2005), 1600-1610. doi: 10.1109/TAP.2005.846723.

[29]

A. J. Devaney, E. A. Marengo and F. K. Gruber, Time-reversal-based imaging and inverse scattering of multiply scattering point targets, J. Acoust. Soc. Am., 118 (2005), 3129-3138. doi: 10.1121/1.2042987.

[30]

J. Garnier, Use of random matrix theory for target detection, localization, and reconstruction, in Proceedings of the Conference Mathematical and Statistical Methods for Imaging, (eds. H. Ammari, J. Garnier, H. Kang and K. Sølna), Contemporary Mathematics Series, American Mathematical Society, 548 (2011), 151-163. doi: 10.1090/conm/548/10832.

[31]

D. J. Hansen and M. S. Vogelius, High frequency perturbation formulas for the effect of small inhomogeneities, J. Phys.: Conf. Ser., 135 (2008), 012106. doi: 10.1088/1742-6596/135/1/012106.

[32]

R. A. Horn and C. R. Johnson, Matrix Analysis, Cambridge University Press, Cambridge, 1985. doi: 10.1017/CBO9780511810817.

[33]

I. M. Johnstone, On the distribution of the largest eigenvalue in principal components analysis, Ann. Statist., 29 (2001), 295-327. doi: 10.1214/aos/1009210543.

[34]

S. Lee, F. Zou and F. A. Wright, Convergence and prediction of principal component scores in high-dimensional settings, Ann. Stat., 38 (2010), 3605-3629. doi: 10.1214/10-AOS821.

[35]

J. G. Minonzio, D. Clorennec, A. Aubry, T. Folégot, T. Pélican, C. Prada, J. de Rosny and M. Fink, Application of the DORT method to the detection and characterization of two targets in a shallow water wave-guide, IEEE Oceans 2005 Eur., 2 (2005), 1001-1006. doi: 10.1109/OCEANSE.2005.1513193.

[36]

M. Oristaglio and H. Blok, Wavefield Imaging and Inversion in Electromagnetics and Acoustics, Cambridge University Press, 2004.

[37]

D. Paul, Asymptotics of sample eigenstructure for a large dimensional spiked covariance model, Statist. Sinica, 17 (2007), 1617-1642.

[38]

A. Shabalin and A. Nobel, Reconstruction of a low-rank matrix in the presence of Gaussian noise, Journal of Multivariate Analysis, 118 (2013), 67-76. doi: 10.1016/j.jmva.2013.03.005.

[39]

G. W. Stewart, Perturbation theory for the singular value decomposition, in SVD and Signal Processing, II: Algorithms, Analysis and Applications, Elsevier, 1990, pp. 99-109.

[40]

M. S. Vogelius and D. Volkov, Asymptotic formulas for perturbations in the electromagnetic fields due to the presence of inhomogeneities, Math. Model. Numer. Anal., 34 (2000), 723-748. doi: 10.1051/m2an:2000101.

[41]

D. Volkov, Numerical methods for locating small dielectric inhomogeneities, Wave Motion, 38 (2003), 189-206. doi: 10.1016/S0165-2125(03)00047-7.

[42]

P.-Å. Wedin, Perturbation bounds in connection with singular value decomposition, BIT Numerical Mathematics, 12 (1972), 99-111.

[43]

X. Yao, G. Bin, X. Luzhou, L. Jian and P. Stoica, Multistatic adaptive microwave imaging for early breast cancer detection, IEEE Trans. Biomedical Eng., 53 (2006), 1647-1657.

[1]

Frank Natterer. Incomplete data problems in wave equation imaging. Inverse Problems and Imaging, 2010, 4 (4) : 685-691. doi: 10.3934/ipi.2010.4.685

[2]

Alfred K. Louis. Diffusion reconstruction from very noisy tomographic data. Inverse Problems and Imaging, 2010, 4 (4) : 675-683. doi: 10.3934/ipi.2010.4.675

[3]

Yunhai Xiao, Junfeng Yang, Xiaoming Yuan. Alternating algorithms for total variation image reconstruction from random projections. Inverse Problems and Imaging, 2012, 6 (3) : 547-563. doi: 10.3934/ipi.2012.6.547

[4]

Xingni Tan, Fuqi Yin, Guihong Fan. Random exponential attractor for stochastic discrete long wave-short wave resonance equation with multiplicative white noise. Discrete and Continuous Dynamical Systems - B, 2020, 25 (8) : 3153-3170. doi: 10.3934/dcdsb.2020055

[5]

Wenjia Jing, Olivier Pinaud. A backscattering model based on corrector theory of homogenization for the random Helmholtz equation. Discrete and Continuous Dynamical Systems - B, 2019, 24 (10) : 5377-5407. doi: 10.3934/dcdsb.2019063

[6]

Shengfan Zhou, Min Zhao. Fractal dimension of random attractor for stochastic non-autonomous damped wave equation with linear multiplicative white noise. Discrete and Continuous Dynamical Systems, 2016, 36 (5) : 2887-2914. doi: 10.3934/dcds.2016.36.2887

[7]

Zhaojuan Wang, Shengfan Zhou. Existence and upper semicontinuity of random attractors for non-autonomous stochastic strongly damped wave equation with multiplicative noise. Discrete and Continuous Dynamical Systems, 2017, 37 (5) : 2787-2812. doi: 10.3934/dcds.2017120

[8]

Zhaojuan Wang, Shengfan Zhou. Random attractor and random exponential attractor for stochastic non-autonomous damped cubic wave equation with linear multiplicative white noise. Discrete and Continuous Dynamical Systems, 2018, 38 (9) : 4767-4817. doi: 10.3934/dcds.2018210

[9]

Nguyen Huy Tuan, Tran Ngoc Thach, Yong Zhou. On a backward problem for two-dimensional time fractional wave equation with discrete random data. Evolution Equations and Control Theory, 2020, 9 (2) : 561-579. doi: 10.3934/eect.2020024

[10]

Jing Qin, Shuang Li, Deanna Needell, Anna Ma, Rachel Grotheer, Chenxi Huang, Natalie Durgin. Stochastic greedy algorithms for multiple measurement vectors. Inverse Problems and Imaging, 2021, 15 (1) : 79-107. doi: 10.3934/ipi.2020066

[11]

Bixiang Wang. Random attractors for non-autonomous stochastic wave equations with multiplicative noise. Discrete and Continuous Dynamical Systems, 2014, 34 (1) : 269-300. doi: 10.3934/dcds.2014.34.269

[12]

María Ángeles García-Ferrero, Angkana Rüland, Wiktoria Zatoń. Runge approximation and stability improvement for a partial data Calderón problem for the acoustic Helmholtz equation. Inverse Problems and Imaging, 2022, 16 (1) : 251-281. doi: 10.3934/ipi.2021049

[13]

S. L. Ma'u, P. Ramankutty. An averaging method for the Helmholtz equation. Conference Publications, 2003, 2003 (Special) : 604-609. doi: 10.3934/proc.2003.2003.604

[14]

Shitao Liu. Recovery of the sound speed and initial displacement for the wave equation by means of a single Dirichlet boundary measurement. Evolution Equations and Control Theory, 2013, 2 (2) : 355-364. doi: 10.3934/eect.2013.2.355

[15]

Peter Giesl, Boumediene Hamzi, Martin Rasmussen, Kevin Webster. Approximation of Lyapunov functions from noisy data. Journal of Computational Dynamics, 2020, 7 (1) : 57-81. doi: 10.3934/jcd.2020003

[16]

Tzong-Yow Lee and Fred Torcaso. Wave propagation in a lattice KPP equation in random media. Electronic Research Announcements, 1997, 3: 121-125.

[17]

Julia Calatayud, Juan Carlos Cortés, Marc Jornet. On the random wave equation within the mean square context. Discrete and Continuous Dynamical Systems - S, 2022, 15 (2) : 409-425. doi: 10.3934/dcdss.2021082

[18]

Tomás Caraballo, José A. Langa, James C. Robinson. Stability and random attractors for a reaction-diffusion equation with multiplicative noise. Discrete and Continuous Dynamical Systems, 2000, 6 (4) : 875-892. doi: 10.3934/dcds.2000.6.875

[19]

Janusz Mierczyński. Averaging in random systems of nonnegative matrices. Conference Publications, 2015, 2015 (special) : 835-840. doi: 10.3934/proc.2015.0835

[20]

Josselin Garnier. Ghost imaging in the random paraxial regime. Inverse Problems and Imaging, 2016, 10 (2) : 409-432. doi: 10.3934/ipi.2016006

2020 Impact Factor: 2.425

Metrics

  • PDF downloads (52)
  • HTML views (0)
  • Cited by (5)

Other articles
by authors

[Back to Top]