\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Radar cross section reduction of a cavity in the ground plane: TE polarization

Abstract Related Papers Cited by
  • The reduction of backscatter radar cross section(RCS) in TE polarization for a rectangular cavity embedded in the ground plane is investigated in this paper. It is established by placing a thin, multilayered radar absorbing material(RAM) with possibly different permittivities at the bottom of the cavity. A minimization problem with respect to the backscatter RCS is formulated to determine the synthesis of RAM. The underlying scattered field is governed by a generalized Helmholtz equation with transparent boundary condition. The gradient with respect to the material permittivity is derived by the adjoint state method. A fast solver for the Helmholtz equation is presented for the optimization scheme. Numerical examples are presented to show the efficiency of the algorithm for RCS reduction.
    Mathematics Subject Classification: 35Q93, 35J05.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    H. Ammari, G. Bao, and A. W. Wood, An integral equation method for the electromagnetic scattering from cavities, Math. Meth. Appl. Sci., 23 (2000), 1057-1072.doi: 10.1002/1099-1476(200008)23:12<1057::AID-MMA151>3.0.CO;2-6.

    [2]

    H. Ammari, G. Bao and A. W. Wood, Analysis of the electromagnetic scattering from a cavity, Japan J. Indust. Appl. Math., 19 (2002), 301-310.doi: 10.1007/BF03167458.

    [3]

    H. Ammari, G. Bao and A. W. Wood, A cavity problem for maxwells equation, Meth. Appl. Anal., 9 (2002), 249-260.

    [4]

    H. T. Anastassiu, A review of electromagnetic scattering analysis for inlets, cavities and open ducts, IEEE Antennas and Propagation Magazine, 45 (2003), 27-40.doi: 10.1109/MAP.2003.1282177.

    [5]

    G. Bao, J. Gao and P. Li, Analysis of direct and inverse cavity scattering problems, Numer. Math. Theor. Meth. Appl., 4 (2011), 419-442.doi: 10.4208/nmtma.2011.m1021.

    [6]

    G. Bao, J. Gao, J. Lin and W. Zhang, Mode matching for the electromagnetic scattering from three-dimensional large cavities, IEEE Antennas Wireless Propagat., 60 (2012), 2004-2010.doi: 10.1109/TAP.2012.2186255.

    [7]

    G. Bao and J. Lai, Radar cross section reduction of a cavity in the ground plane, Commun. Comput. Phys., to appear.

    [8]

    G. Bao and W. Sun, A fast algorithm for the electromagnetic scattering from a large cavity, SIAM J. Sci. Comput., 27 (2005), 553-574.doi: 10.1137/S1064827503428539.

    [9]

    G. Bao, K. Yun and Z. Zhou, Stability of the scattering from a large electromagnetic cavity in two dimensions, SIAM J. Math. Anal., 44 (2012), 383-404.doi: 10.1137/110823791.

    [10]

    G. Bao and W. Zhang, An improved mode-matching method for large cavities, IEEE Antennas Wireless Propagat. Lett., 27 (2005), 393-396.doi: 10.1109/LAWP.2005.859375.

    [11]

    R. Burkholder and P. Pathak, Analysis of em penetration into and scattering by electrically large open waveguide cavities using gaussian beam shooting, Proc. IEEE, 79 (1991), 1401-1412.doi: 10.1109/5.104215.

    [12]

    R. Chou and S. Lee, Modal attenuation in multilayered coating waveguide, IEEE Trans. Microwave Theory Tech., 36 (1988), 1167-1176.

    [13]

    D. C. Dobson, Optimal design of periodic antireflective structures for the helmholtz equation, Euro. J. Appl. Math., 4 (1993), 321-340.doi: 10.1017/S0956792500001169.

    [14]

    R. Hemon, P. Pouliguen, H. He, J. Saillard and J. F. Damiens, Computation of em field scattered by an open-ended cavity and by a cavity under radome using the iterative physical optics, Progress In Electromagnetics Research, PIER, 80 (2008), 77-105.

    [15]

    P. Huddleston, Scattering from conducting finite cylinders with thin coatings, IEEE Trans. Antennas Propagat., 35 (1987), 1128-1136.doi: 10.1109/TAP.1987.1143984.

    [16]

    J. Jin, A finite element-boundary integral formulation for scattering by threedimensional cavity-backed apertures, IEEE Trans. Antennas Propagat., 39 (1991), 97-104.

    [17]

    J. Jin, The Finite Element Method in Electromagnetics, 2nd edition. Wiley, New York, 2002.

    [18]

    J. H. Kim and Y. J. Lee, Optimization of gradient-index antireflection coatings, J. Opt. Soc. Korea, 4 (2000), 86-88.doi: 10.3807/JOSK.2000.4.2.086.

    [19]

    E. Knott, J. Shaeffer, and M. Tuley, Radar Cross Section, Second edition. Scitech Publishing Inc, Releigh, NC, 2004.

    [20]

    H. Ling, R. Chou and S. Lee, Shooting and bouncing rays: Calculating the rcs of an arbitrarily shaped cavity, IEEE Trans. Antennas Propagat., 37 (1989), 194-205.doi: 10.1109/8.18706.

    [21]

    J. Liu and J. Jin, A special higher order finite-element method for scattering by deep cavities, IEEE Trans. Antennas Propagat., 48 (2000), 694-703.

    [22]

    P. Monk, Finite Element Methods for Maxwell's Equation, Oxford University Press, 2003.doi: 10.1093/acprof:oso/9780198508885.001.0001.

    [23]

    H. Mosallaei and Y. Rahmat-Samii, Rcs reduction of canonical targets using genetic algorithm synthesized ram, IEEE Trans. Antennas Propagat., 48 (2000), 1594-1606.doi: 10.1109/8.899676.

    [24]

    J. Nocedal and S. J. Wright, Numerical Optimization, Second Edition, Springer Series in Operations Research, Springer Verlag, Berlin, 2006.

    [25]

    S. Ohnuki and T. Hinata, RCS of material partially loaded parallel-plate waveguide cavities, IEEE Trans. Antennas Propagat., 51 (2003), 337-344.doi: 10.1109/TAP.2003.809855.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(144) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return