Citation: |
[1] |
R. Al-Assaad and D. Byrne, Error analysis in inverse scatterometry. I. Modeling, J. Opt. Soc. Am. A, 24 (2007), 326-338.doi: 10.1364/JOSAA.24.000326. |
[2] |
G. Bao and D. C. Dobson, Modeling and optimal design of diffractive optical structures, Surveys on Mathematics for Industry, 8 (1998), 37-62. |
[3] |
G. Bao, Finite element approximation of time harmonic waves in periodic structures, SIAM J.Numer.Anal., 32 (1995), 1155-1169.doi: 10.1137/0732053. |
[4] |
B. Bergner, T. Germer and T. Suleski, Effective medium approximations for modeling optical reflectance from gratings with rough edges, J. Opt. Soc. Am. A, 27 (2010), 1083-1090.doi: 10.1364/JOSAA.27.001083. |
[5] |
BIPM, IEC, IFCC, ILAC, ISO, IUPAC, IUPAP and OIML, Evaluation of measurement data - Guide to the expression of uncertainty in measurement, Joint Committee for Guides in Metrology, JCGM 100:2008, 2008. |
[6] |
BIPM, IEC, IFCC, ILAC, ISO, IUPAC, IUPAP and OIML, Evaluation of measurement data - Supplement 1 to the Guide to the expression of uncertainty in measurement - Propagation of distributions using a Monte Carlo method, Joint Committee for Guides in Metrology, JCGM 100:2008, 2008. |
[7] |
O. Cessenat and B. Despres, Application of an ultra weak variational formulation of elliptic PDEs to the two-dimensional Helmholtz problem, SIAM J. Numer. Anal., 35 (1998), 255-299.doi: 10.1137/S0036142995285873. |
[8] |
D. Champeney, Fourier Transforms and Their Physical Applications, Academic Press, London and New York, 1973. |
[9] |
J. Chandezon, G. Raoult and D. Maystre, A new theoretical method for diffraction gratings and its numerical application, J. Opt., 11 (1980), 235. |
[10] |
A. Chen and X. Friedmann, Maxwell's equation in a periodic structure, Trans. Amer. Math. Soc., 323 (1991), 811-818. |
[11] |
D. Colton and R. Kress, Inverse Acoustic and Electromagnetic Scattering Theory, Applied Mathematical Sciences 93, 2nd ed., Springer-Verlag, Berlin, Heidelberg, New York, 1998.doi: 10.1007/978-3-662-03537-5. |
[12] |
J. Elschner, R. Hinder, A. Rathsfeld and G. Schmidt, ="http://www.wias-berlin.de/software/DIPOG" target="_blank">http://www.wias-berlin.de/software/DIPOG. |
[13] |
J. Elschner, R. Hinder and G. Schmidt, Finite element solution of conical diffraction problems, Adv. Comput. Math., 16 (2002), 139-156.doi: 10.1023/A:1014456026778. |
[14] |
O. Ersoy, Diffraction, Fourier Optics, and Imaging, Wiley-Interscience, New York, 2006.doi: 10.1002/0470085002. |
[15] |
T. Germer, Effect of line and trench profile variation on specular and diffusive reflectance from periodic structure, J. Opt. Soc. Am., A24 (2007), 696-701.doi: 10.1364/JOSAA.24.000696. |
[16] |
J. Goodman, Introduction to Fourier Optics, Roberts & Company, Greenwood Village, 2005. |
[17] |
H. Gross, S. Heidenreich, M.-A. Henn, G. Dai, F. Scholze and M. Bär, Modelling line edge roughness in periodic line-space structures by Fourier optics to improve scatterometry, J. Europ. Opt. Soc. Rap. Public., 9 (2014).doi: 10.2971/jeos.2014.14003. |
[18] |
H. Gross, M.-A. Henn, S. Heidenreich, A. Rathsfeld and M. Bär, Modeling of line roughness and its impact on the diffraction intensities and the reconstructed critical dimensions in scatterometry, Appl. Optics, 51 (2012), 7384-7394.doi: 10.1364/AO.51.007384. |
[19] |
H. Gross, R. Model, M. Bär, M. Wurm, B. Bodermann and A. Rathsfeld, Mathematical modelling of indirect measurements in scatterometry, Measurement, 39 (2006), 782-794.doi: 10.1016/j.measurement.2006.04.009. |
[20] |
H. Gross, A. Rathsfeld, F. Scholze and M. Bär, Profile reconstruction in extreme ultraviolet (EUV) scatterometry: modeling and uncertainty estimates, Meas. Sci. Technol., 20 (2009), 105102.doi: 10.1088/0957-0233/20/10/105102. |
[21] |
H. Gross, A. Rathsfeld, F. Scholze, R. Model and M. Bär, Computational methods estimating uncertainties for profile reconstruction in scatterometry, Proc. SPIE, 6995 (2008), OT-1-OT-9.doi: 10.1117/12.781006. |
[22] |
M.-A. Henn, H. Gross, S. Heidenreich, F. Scholze, C. Elster and M. Bär, Improved reconstruction of Critical Dimensions in Extreme Ultraviolet Scatterometry by Modeling Systematic Errors, Meas. Sci. Technol., 25 (2014), (9pp).doi: 10.1088/0957-0233/25/4/044003. |
[23] |
M.-A. Henn, H. Gross, F. Scholze, M. Wurm, C. Elster and M. Bär, A maximum likelihood approach to the inverse problem of scatterometry, Optics Express, 20 (2012), 12771-12786.doi: 10.1364/OE.20.012771. |
[24] |
M.-A. Henn, S. Heidenreich, H. Gross, A. Rathsfeld, F. Scholze and M. Bär, Improved grating reconstruction by determination of line roughness in extreme ultraviolet scatterometry, Optics Letters, 37 (2012), 5229-5231.doi: 10.1364/OL.37.005229. |
[25] |
A. Hesford and W. Chew, A frequency-domain formulation of the Frechet derivative to exploit the inherent parallelism of the distorted Born iterative method, Waves in Random and Complex Media, 16 (2006), 495-508.doi: 10.1080/17455030600675830. |
[26] |
H. Huang and F. Terry Jr, Spectroscopic ellipsometry and reflectometry from gratings (scatterometry) for critical dimension measurement and in situ, real-time process monitoring, Thin Solid Films, 455 (2004), 828-836.doi: 10.1016/j.tsf.2004.04.010. |
[27] |
F. Ihlenburg, Finite Element Analysis of Acoustic Scattering, Springer-Verlag, Berlin Heidelberg, 1998.doi: 10.1007/b98828. |
[28] |
A. Kato and F. Scholze, Effect of line roughness on the diffraction intensities in angular resolved scatterometry, Appl. Opt., 49 (2010), 6102-6110.doi: 10.1364/AO.49.006102. |
[29] |
B. Kleemann, Elektromagnetische Analyse von Oberflächengittern von IR bis XUV Mittels Einer Parametrisierten Randintegralmethode: Theorie, Vergleich und Anwendungen, PhD thesis, TU Ilmenau, 2002. |
[30] |
G. Lalanne P. and Morris, Highly improved convergence of the coupled-wave method for TM-polarization, JOSA A, 13 (1996), 779-784. |
[31] |
L. Li, New formulation of the Fourier modal method for crossed surface-relief gratings, JOSA A, 14 (1997), 2758-2767.doi: 10.1364/JOSAA.14.002758. |
[32] |
C. Mack, Analytic form for the power spectral density in one, two, and three dimensions, J. Micro/Nanolith. MEMS MOEMS, 10 (2011), 040501.doi: 10.1117/1.3663567. |
[33] |
C. Mack, Generating random rough edges, surfaces, and volumes, Appl. Optics, 52 (2013), 1472-1480.doi: 10.1364/AO.52.001472. |
[34] |
J. Melenk and I. Babuška, The partition of unity finite element method: Basic theory and applications, Comput. Meth. Appl. Mech. Eng., 139 (1996), 289-314.doi: 10.1016/S0045-7825(96)01087-0. |
[35] |
R. Millar, Maximum Likelihood Estimation and Inference, Wiley, 2011.doi: 10.1002/9780470094846. |
[36] |
B. Minhas, S. Coulombe, S. Sohail, H. Naqvi and J. McNeil, Ellipsometric scatterometry for metrology of sub-0.1$\mu$m-linewidth structures, Appl. Optics, 37 (1998), 5112-5115. |
[37] |
M. Moharam, E. Grann, D. Pommet and T. Gaylord, Stable implementation of the rigorous coupled-wave analysis for surface-relief gratings: enhanced transmittance matrix approach, JOSA A, 12 (1995), 1077-1086.doi: 10.1364/JOSAA.12.001077. |
[38] |
T. Moharam and M. G. Gaylord, Rigorous coupled wave analysis, J. Opt. Soc. Amer., 71 (1981), 811-812. |
[39] |
M. Wurm, Über die Dimensionelle Charakterisierung von Gitterstrukturen auf Fotomasken mit Einem Neuartigen DUV-Scatterometer, PhD thesis, Friedrich-Schiller-Universität Jena, 2008. |
[40] |
H. Patrick, T. Germer, R. Silver and B. Bunday, Developing an uncertainty analysis for optical scatterometry, Proc. SPIE, 7272 (2009), 72720T. |
[41] |
H. Patrick, T. Germer, Y. Ding, H. Ro, L. Richter and C. Soles, In situ measurement of annealing-induced line shape evolution in nanoimprinted polymers using scatterometry, Proc. SPIE, 7271 (2009), 59.doi: 10.1117/12.815360. |
[42] |
R. Petit and L. Botten, Electromagnetic Theory of Gratings, Springer-Verlag, Berlin Heidelberg, 1980. |
[43] |
C. Raymond, M. Murnane, S. Prins, S. Sohail, H. Naqvi, J. McNeil and J. Hosch, Multiparameter grating metrology using optical scatterometry, J. Vac. Sci. Technol., B, 15 (1997), 361-368.doi: 10.1116/1.589320. |
[44] |
C. Raymond, M. Murnane, S. Sohail, H. Naqvi and J. McNeil, Metrology of subwavelength photoresist gratings using optical scatterometry, J. Vac. Sci. Technol., B, 13 (1995), 1484-1495.doi: 10.1116/1.588176. |
[45] |
A. Schaedle, L. Zschiedrich, S. Burger, R. Klose and F. Schmidt, Domain Decomposition Method for Maxwell's Equations: Scattering of Periodic Structures, ZIB-Report 06-04, Konrad Zuse Institut, Berlin, 2006. |
[46] |
F. Scholze, C. Laubis, C. Buchholz, A. Fischer, S. Plöger, F. Scholz, H. Wagner and G. Ulm, Status of EUV reflectometry at PTB, Proc. SPIE, 5751 (2005), 749-58. |
[47] |
F. Scholze, V. Soltwisch, G. Dai, M.-A. Henn and H. Gross, Comparison of CD measurements of an EUV photomask by EUV scatterometry and CD-AFM, Proc. SPIE, 8880 (2013), 88800O-1-88800O-12.doi: 10.1117/12.2025827. |
[48] |
F. Scholze, J. Tümmler and G. Ulm, High-accuracy radiometry in the EUV range at the PTB soft X-ray radiometry beam line, Metrologia, 40 (2003). |
[49] |
T. Schuster, S. Rafler, V. Paz, F. Frenner and W. Osten, Fieldstitching with Kirchhoff-boundaries as a model based description for line edge roughness (LER) in scatterometry, Microelectronic Engineering, 86 (2009), 1029-1032.doi: 10.1016/j.mee.2008.11.019. |
[50] |
A. Tarantola, Inverse Problem Theory, Elsevier Amsterdam etc., 1987. |
[51] |
A. Tavrov, M. Totzeck, N. Kerwien and H. Tiziani, Rigorous coupled-wave analysis calculus of submicrometer interference pattern and resolving, Opt.Eng., 41 (2002), 1886-1892. |
[52] |
F. Torcal-Milla, L. Sanchez-Brea and E. Bernabeu, Diffraction of gratings with rough edges, Optics Express, 16 (2008), 19757-19769.doi: 10.1364/OE.16.019757. |
[53] |
J. Turunen and F. Wyrowski, Diffractive optics for industrial and commercial applications, Wiley-VCH, Berlin, 1997. |
[54] |
H. Urbach, Convergence of the Galerkin method for two-dimensional electromagnetic problems, SIAM J. Numer. Anal., 28 (1991), 697-710.doi: 10.1137/0728037. |
[55] |
D. Voelz, Computational Fourier Optics, TT89, SPIE PRESS, 2011. |
[56] |
M. Wurm, B. Bodermann and W. Mirandé, Evaluation of scatterometry tools for critical dimension metrology, DGaO Proceedings, 106. |