June  2015, 8(3): 521-546. doi: 10.3934/dcdss.2015.8.521

Mathematical modelling of multi conductor cables

1. 

POEMS, INRIA - CNRS:UMR7231 - ENSTA ParisTech, ENSTA ParisTech, 828 Boulevard des Maréchaux, 91762 Palaiseau, France, France

2. 

M3DISIM, INRIA, Alan Turing, 1 rue Honoré d'Estienne d'Orves, 91120 Palaiseau, France

Received  December 2013 Revised  March 2014 Published  October 2014

This paper proposes a formal justification of simplified 1D models for the propagation of electromagnetic waves in thin non-homogeneous lossy conductor cables. Our approach consists in deriving these models from an asymptotic analysis of 3D Maxwell's equations. In essence, we extend and complete previous results to the multi-wires case.
Citation: Geoffrey Beck, Sebastien Imperiale, Patrick Joly. Mathematical modelling of multi conductor cables. Discrete & Continuous Dynamical Systems - S, 2015, 8 (3) : 521-546. doi: 10.3934/dcdss.2015.8.521
References:
[1]

I. Aganovic and Z. Tutek, A justification of the one-dimensional model of elastic beam,, Math. Methods in Applied Sci., 8 (1986), 1.  doi: 10.1002/mma.1670080133.  Google Scholar

[2]

C. Amrouche, C. Bernardi, M. Dauge and V. Girault, Vector potentials in three-dimensional non-smooth domains,, Mathematical Methods in the Applied Sciences, 21 (1998), 823.  doi: 10.1002/(SICI)1099-1476(199806)21:9<823::AID-MMA976>3.0.CO;2-B.  Google Scholar

[3]

A. Bermúdez, D. Gómez and P. Salgado, Mathematical Models and Numerical Simulation in Electromagnetism,, Springer, (2013).  doi: 10.1007/978-3-319-02949-8.  Google Scholar

[4]

G. Canadas, Speed of Propagation of Solutions of a Linear Integro-differential Equation with Nonconstant Coefficients,, SIAM Journal on Mathematical Analysis, 16 (1985).  doi: 10.1137/0516009.  Google Scholar

[5]

B. Cockburn and P. Joly, Maxwell equations in polarizable media,, SIAM Journal on Mathematical Analysis, 19 (1988), 1372.  doi: 10.1137/0519101.  Google Scholar

[6]

R. Dautray and J. L. Lions, Mathematical Analysis and Numerical Methods for Science and Technology,, 3, (1990).   Google Scholar

[7]

M. Delfour and J. P. Zolésio, Shapes and Geometries. Analysis, Differential Calculus, and Optimization,, Advances in Design and Control SIAM, (2001).   Google Scholar

[8]

V. Girault and P.-A. Raviart, Finite Element Methods for Navier-Stokes Equations, Theory and Algorithms,, Springer-Verlag 1986., (1986).  doi: 10.1007/978-3-642-61623-5.  Google Scholar

[9]

S. Imperiale and P. Joly, Mathematical modeling of electromagnetic wave propagation in heterogeneous lossy coaxial cables with variable cross section,, Applied Num. Mathematics, ().  doi: 10.1016/j.apnum.2013.03.011.  Google Scholar

[10]

S. Imperiale and P. Joly, Error estimates for 1D asymptotic models in coaxial cables with non-homogeneous cross-section,, Advances in Applied Mathematics and Mechanics, 4 (2012), 647.   Google Scholar

[11]

P. Monk, Finite Element Methods for Maxwell's Equations,, Oxford science publications, (2003).  doi: 10.1137/0729045.  Google Scholar

[12]

C. R. Paul, Analysis of Multiconductor Transmission Lines,, 2nd. New York 2008., (2008).  doi: 10.1109/9780470547212.  Google Scholar

[13]

J. Stratton, Electromagnetic Theory,, second printing ed., (1941).   Google Scholar

[14]

M. F. Veiga, Asymptotic method applied to a beam with a variable cross section,, in Asymptotic Methods for Elastic Structures (Lisbon, (1993), 237.   Google Scholar

[15]

W. T. Weeks, Calculation of Coefficients of Capacitance of Multiconductor Transmission Lines in the Presence of a Dielectric Interface,, IEEE Trans. MTT, 18 (1970), 35.  doi: 10.1109/TMTT.1970.1127130.  Google Scholar

[16]

W. T. Weeks, Multiconductor transmission line theory in the TEM approximation,, IBM Journal of Research and Development, (1972), 604.  doi: 10.1147/rd.166.0604.  Google Scholar

show all references

References:
[1]

I. Aganovic and Z. Tutek, A justification of the one-dimensional model of elastic beam,, Math. Methods in Applied Sci., 8 (1986), 1.  doi: 10.1002/mma.1670080133.  Google Scholar

[2]

C. Amrouche, C. Bernardi, M. Dauge and V. Girault, Vector potentials in three-dimensional non-smooth domains,, Mathematical Methods in the Applied Sciences, 21 (1998), 823.  doi: 10.1002/(SICI)1099-1476(199806)21:9<823::AID-MMA976>3.0.CO;2-B.  Google Scholar

[3]

A. Bermúdez, D. Gómez and P. Salgado, Mathematical Models and Numerical Simulation in Electromagnetism,, Springer, (2013).  doi: 10.1007/978-3-319-02949-8.  Google Scholar

[4]

G. Canadas, Speed of Propagation of Solutions of a Linear Integro-differential Equation with Nonconstant Coefficients,, SIAM Journal on Mathematical Analysis, 16 (1985).  doi: 10.1137/0516009.  Google Scholar

[5]

B. Cockburn and P. Joly, Maxwell equations in polarizable media,, SIAM Journal on Mathematical Analysis, 19 (1988), 1372.  doi: 10.1137/0519101.  Google Scholar

[6]

R. Dautray and J. L. Lions, Mathematical Analysis and Numerical Methods for Science and Technology,, 3, (1990).   Google Scholar

[7]

M. Delfour and J. P. Zolésio, Shapes and Geometries. Analysis, Differential Calculus, and Optimization,, Advances in Design and Control SIAM, (2001).   Google Scholar

[8]

V. Girault and P.-A. Raviart, Finite Element Methods for Navier-Stokes Equations, Theory and Algorithms,, Springer-Verlag 1986., (1986).  doi: 10.1007/978-3-642-61623-5.  Google Scholar

[9]

S. Imperiale and P. Joly, Mathematical modeling of electromagnetic wave propagation in heterogeneous lossy coaxial cables with variable cross section,, Applied Num. Mathematics, ().  doi: 10.1016/j.apnum.2013.03.011.  Google Scholar

[10]

S. Imperiale and P. Joly, Error estimates for 1D asymptotic models in coaxial cables with non-homogeneous cross-section,, Advances in Applied Mathematics and Mechanics, 4 (2012), 647.   Google Scholar

[11]

P. Monk, Finite Element Methods for Maxwell's Equations,, Oxford science publications, (2003).  doi: 10.1137/0729045.  Google Scholar

[12]

C. R. Paul, Analysis of Multiconductor Transmission Lines,, 2nd. New York 2008., (2008).  doi: 10.1109/9780470547212.  Google Scholar

[13]

J. Stratton, Electromagnetic Theory,, second printing ed., (1941).   Google Scholar

[14]

M. F. Veiga, Asymptotic method applied to a beam with a variable cross section,, in Asymptotic Methods for Elastic Structures (Lisbon, (1993), 237.   Google Scholar

[15]

W. T. Weeks, Calculation of Coefficients of Capacitance of Multiconductor Transmission Lines in the Presence of a Dielectric Interface,, IEEE Trans. MTT, 18 (1970), 35.  doi: 10.1109/TMTT.1970.1127130.  Google Scholar

[16]

W. T. Weeks, Multiconductor transmission line theory in the TEM approximation,, IBM Journal of Research and Development, (1972), 604.  doi: 10.1147/rd.166.0604.  Google Scholar

[1]

Yue-Jun Peng, Shu Wang. Asymptotic expansions in two-fluid compressible Euler-Maxwell equations with small parameters. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 415-433. doi: 10.3934/dcds.2009.23.415

[2]

Wei Feng, Michael Freeze, Xin Lu. On competition models under allee effect: Asymptotic behavior and traveling waves. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5609-5626. doi: 10.3934/cpaa.2020256

[3]

Roland Schnaubelt, Martin Spitz. Local wellposedness of quasilinear Maxwell equations with absorbing boundary conditions. Evolution Equations & Control Theory, 2021, 10 (1) : 155-198. doi: 10.3934/eect.2020061

[4]

Adrian Viorel, Cristian D. Alecsa, Titus O. Pinţa. Asymptotic analysis of a structure-preserving integrator for damped Hamiltonian systems. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020407

[5]

José Luiz Boldrini, Jonathan Bravo-Olivares, Eduardo Notte-Cuello, Marko A. Rojas-Medar. Asymptotic behavior of weak and strong solutions of the magnetohydrodynamic equations. Electronic Research Archive, 2021, 29 (1) : 1783-1801. doi: 10.3934/era.2020091

[6]

Yueh-Cheng Kuo, Huey-Er Lin, Shih-Feng Shieh. Asymptotic dynamics of hermitian Riccati difference equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020365

[7]

Marion Darbas, Jérémy Heleine, Stephanie Lohrengel. Numerical resolution by the quasi-reversibility method of a data completion problem for Maxwell's equations. Inverse Problems & Imaging, 2020, 14 (6) : 1107-1133. doi: 10.3934/ipi.2020056

[8]

Thomas Y. Hou, Dong Liang. Multiscale analysis for convection dominated transport equations. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 281-298. doi: 10.3934/dcds.2009.23.281

[9]

Nahed Naceur, Nour Eddine Alaa, Moez Khenissi, Jean R. Roche. Theoretical and numerical analysis of a class of quasilinear elliptic equations. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 723-743. doi: 10.3934/dcdss.2020354

[10]

Eric Foxall. Boundary dynamics of the replicator equations for neutral models of cyclic dominance. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 1061-1082. doi: 10.3934/dcdsb.2020153

[11]

Zhenzhen Wang, Tianshou Zhou. Asymptotic behaviors and stochastic traveling waves in stochastic Fisher-KPP equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020323

[12]

Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020450

[13]

John Mallet-Paret, Roger D. Nussbaum. Asymptotic homogenization for delay-differential equations and a question of analyticity. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3789-3812. doi: 10.3934/dcds.2020044

[14]

Andrew Comech, Scipio Cuccagna. On asymptotic stability of ground states of some systems of nonlinear Schrödinger equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1225-1270. doi: 10.3934/dcds.2020316

[15]

Do Lan. Regularity and stability analysis for semilinear generalized Rayleigh-Stokes equations. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021002

[16]

Divine Wanduku. Finite- and multi-dimensional state representations and some fundamental asymptotic properties of a family of nonlinear multi-population models for HIV/AIDS with ART treatment and distributed delays. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021005

[17]

Hoang The Tuan. On the asymptotic behavior of solutions to time-fractional elliptic equations driven by a multiplicative white noise. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1749-1762. doi: 10.3934/dcdsb.2020318

[18]

Xing-Bin Pan. Variational and operator methods for Maxwell-Stokes system. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3909-3955. doi: 10.3934/dcds.2020036

[19]

Pierre-Etienne Druet. A theory of generalised solutions for ideal gas mixtures with Maxwell-Stefan diffusion. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020458

[20]

George W. Patrick. The geometry of convergence in numerical analysis. Journal of Computational Dynamics, 2021, 8 (1) : 33-58. doi: 10.3934/jcd.2021003

2019 Impact Factor: 1.233

Metrics

  • PDF downloads (60)
  • HTML views (0)
  • Cited by (2)

[Back to Top]