June  2015, 8(3): 547-561. doi: 10.3934/dcdss.2015.8.547

Fast imaging of electromagnetic scatterers by a two-stage multilevel sampling method

1. 

Faculty of Science, South University of Science and Technology of China, Shenzhen, 518055

2. 

Department of Mathematics, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China

3. 

Department of Computing Sciences, School of Mathematics and Statistics, Xi’an Jiaotong University, Xi’an, 710049, China

Received  December 2013 Revised  February 2014 Published  October 2014

Some effective imaging schemes for inverse scattering problems were recently proposed in [13,14] for locating multiple multiscale electromagnetic (EM) scatterers, namely a combination of components of possible small size and regular size compared to the detecting EM wavelength. In this paper, instead of using a single far-field measurement, we relax the assumption of one fixed frequency to multiple ones, and develop efficient numerical techniques to speed up those imaging schemes by adopting multi-frequency and Multilevel ideas in a two-stage manner. Numerical tests are presented to demonstrate the efficiency and the salient features of the proposed fast imaging scheme.
Citation: Jingzhi Li, Hongyu Liu, Qi Wang. Fast imaging of electromagnetic scatterers by a two-stage multilevel sampling method. Discrete & Continuous Dynamical Systems - S, 2015, 8 (3) : 547-561. doi: 10.3934/dcdss.2015.8.547
References:
[1]

H. Ammari and H. Kang, Reconstruction of Small Inhomogeneities from Boundary Measurements,, Lecture Notes in Mathematics, (1846).  doi: 10.1007/b98245.  Google Scholar

[2]

H. Ammari and H. Kang, Polarization and Moment Tensors. With Applications to Inverse Problems and Effective Medium Theory,, Applied Mathematical Sciences, (2007).   Google Scholar

[3]

M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions,, Dover, (1965).  doi: 10.1119/1.1972842.  Google Scholar

[4]

H. Ammari and J.-C. Nédélec, Low-frequency electromagnetic scattering,, SIAM J. Math. Anal., 31 (2000), 836.  doi: 10.1137/S0036141098343604.  Google Scholar

[5]

H. Ammari, H. Kang, E. Kim and J. Lee, The generalized polarization tensors for resolved imaging. Part II: Shape and electromagnetic parameters reconstruction of an electromagnetic inclusion from multistatic measurements,, Math. Comp., 81 (2012), 839.  doi: 10.1090/S0025-5718-2011-02534-2.  Google Scholar

[6]

F. Cakoni and D. Colton, Qualitative Methods in Inverse Scattering Theory: An Introduction,, Springer, (2006).   Google Scholar

[7]

F. Cakoni, D. Colton and P. Monk, The Linear Sampling Method in Inverse Electromagnetic Scattering,, Philadelphia: SIAM, (2011).  doi: 10.1137/1.9780898719406.  Google Scholar

[8]

X. Chen and Y. Zhong, MUSIC electromagnetic imaging with enhanced resolution for small inclusions,, Inverse Problems, 25 (2009).  doi: 10.1088/0266-5611/25/1/015008.  Google Scholar

[9]

D. Colton, J. Coyle and P. Monk, Recent developments in inverse acoustic scattering theory,, SIAM Rev., 42 (2000), 369.  doi: 10.1137/S0036144500367337.  Google Scholar

[10]

D. Colton and A. Kirsch, A simple method for solving inverse scattering problems in the resonance region,, Inverse Problems, 12 (1996), 383.  doi: 10.1088/0266-5611/12/4/003.  Google Scholar

[11]

D. Colton and R. Kress, Integral Equation Methods in Scattering Theory,, John Wiley & Sons, (1983).   Google Scholar

[12]

D. Colton and R. Kress, Inverse Acoustic and Electromagnetic Scattering Theory,, Cambridge: Cambridge University Press, (1998).  doi: 10.1007/978-3-662-03537-5.  Google Scholar

[13]

J. Li, H. Liu, Z. Shang and H. Sun, Two single-shot methods for locating multiple electromagnetic scatterers,, SIAM J. Appl. Mat., 73 (2013), 1721.  doi: 10.1137/130907690.  Google Scholar

[14]

J. Li, H. Liu and Q. Wang, Locating multiple multiscale electromagnetic scatterers by a single far-field measurement,, SIAM J. Imaging Sci., 6 (2013), 2285.  doi: 10.1137/130920356.  Google Scholar

[15]

J. Li, H. Liu and Q. Wang, Enhanced multilevel linear sampling methods for inverse scattering problems,, J. Comput. Phys., 22 (2014), 554.  doi: 10.1016/j.jcp.2013.09.048.  Google Scholar

[16]

J. Li, H. Liu and J. Zou, Multilevel linear sampling method for inverse scattering problems,, SIAM J. Sci. Comp., 30 (2008), 1228.  doi: 10.1137/060674247.  Google Scholar

[17]

J-C. Nédélec, Acoustic and Electromagnetic Equations: Integral Representations for Harmonic Problems,, volume 144, (2001).  doi: 10.1007/978-1-4757-4393-7.  Google Scholar

[18]

C. G. Someda, Electromagnetic Waves,, Boca Raton, (2006).   Google Scholar

[19]

J. Li and J. Zou, A direct sampling method for inverse scattering using far-field data,, Inverse Problems & Imaging, 7 (2013).  doi: 10.3934/ipi.2013.7.757.  Google Scholar

[20]

M. Ikehata, Reconstruction of obstacles from boundary measurements,, Wave Motion, 3 (1999), 205.  doi: 10.1016/S0165-2125(99)00006-2.  Google Scholar

[21]

A. Kirsch and N. Grinberg, The Factorization Method for Inverse Problems,, Oxford University Press, (2008).   Google Scholar

[22]

R. Potthast, A survey on sampling and probe methods for inverse problems,, Inverse Problems, 22 (2006).  doi: 10.1088/0266-5611/22/2/R01.  Google Scholar

[23]

G. Uhlmann, Inside Out: Inverse Problems and Applications,, MSRI Publications, (2003).  doi: 10.1090/conm/333.  Google Scholar

show all references

References:
[1]

H. Ammari and H. Kang, Reconstruction of Small Inhomogeneities from Boundary Measurements,, Lecture Notes in Mathematics, (1846).  doi: 10.1007/b98245.  Google Scholar

[2]

H. Ammari and H. Kang, Polarization and Moment Tensors. With Applications to Inverse Problems and Effective Medium Theory,, Applied Mathematical Sciences, (2007).   Google Scholar

[3]

M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions,, Dover, (1965).  doi: 10.1119/1.1972842.  Google Scholar

[4]

H. Ammari and J.-C. Nédélec, Low-frequency electromagnetic scattering,, SIAM J. Math. Anal., 31 (2000), 836.  doi: 10.1137/S0036141098343604.  Google Scholar

[5]

H. Ammari, H. Kang, E. Kim and J. Lee, The generalized polarization tensors for resolved imaging. Part II: Shape and electromagnetic parameters reconstruction of an electromagnetic inclusion from multistatic measurements,, Math. Comp., 81 (2012), 839.  doi: 10.1090/S0025-5718-2011-02534-2.  Google Scholar

[6]

F. Cakoni and D. Colton, Qualitative Methods in Inverse Scattering Theory: An Introduction,, Springer, (2006).   Google Scholar

[7]

F. Cakoni, D. Colton and P. Monk, The Linear Sampling Method in Inverse Electromagnetic Scattering,, Philadelphia: SIAM, (2011).  doi: 10.1137/1.9780898719406.  Google Scholar

[8]

X. Chen and Y. Zhong, MUSIC electromagnetic imaging with enhanced resolution for small inclusions,, Inverse Problems, 25 (2009).  doi: 10.1088/0266-5611/25/1/015008.  Google Scholar

[9]

D. Colton, J. Coyle and P. Monk, Recent developments in inverse acoustic scattering theory,, SIAM Rev., 42 (2000), 369.  doi: 10.1137/S0036144500367337.  Google Scholar

[10]

D. Colton and A. Kirsch, A simple method for solving inverse scattering problems in the resonance region,, Inverse Problems, 12 (1996), 383.  doi: 10.1088/0266-5611/12/4/003.  Google Scholar

[11]

D. Colton and R. Kress, Integral Equation Methods in Scattering Theory,, John Wiley & Sons, (1983).   Google Scholar

[12]

D. Colton and R. Kress, Inverse Acoustic and Electromagnetic Scattering Theory,, Cambridge: Cambridge University Press, (1998).  doi: 10.1007/978-3-662-03537-5.  Google Scholar

[13]

J. Li, H. Liu, Z. Shang and H. Sun, Two single-shot methods for locating multiple electromagnetic scatterers,, SIAM J. Appl. Mat., 73 (2013), 1721.  doi: 10.1137/130907690.  Google Scholar

[14]

J. Li, H. Liu and Q. Wang, Locating multiple multiscale electromagnetic scatterers by a single far-field measurement,, SIAM J. Imaging Sci., 6 (2013), 2285.  doi: 10.1137/130920356.  Google Scholar

[15]

J. Li, H. Liu and Q. Wang, Enhanced multilevel linear sampling methods for inverse scattering problems,, J. Comput. Phys., 22 (2014), 554.  doi: 10.1016/j.jcp.2013.09.048.  Google Scholar

[16]

J. Li, H. Liu and J. Zou, Multilevel linear sampling method for inverse scattering problems,, SIAM J. Sci. Comp., 30 (2008), 1228.  doi: 10.1137/060674247.  Google Scholar

[17]

J-C. Nédélec, Acoustic and Electromagnetic Equations: Integral Representations for Harmonic Problems,, volume 144, (2001).  doi: 10.1007/978-1-4757-4393-7.  Google Scholar

[18]

C. G. Someda, Electromagnetic Waves,, Boca Raton, (2006).   Google Scholar

[19]

J. Li and J. Zou, A direct sampling method for inverse scattering using far-field data,, Inverse Problems & Imaging, 7 (2013).  doi: 10.3934/ipi.2013.7.757.  Google Scholar

[20]

M. Ikehata, Reconstruction of obstacles from boundary measurements,, Wave Motion, 3 (1999), 205.  doi: 10.1016/S0165-2125(99)00006-2.  Google Scholar

[21]

A. Kirsch and N. Grinberg, The Factorization Method for Inverse Problems,, Oxford University Press, (2008).   Google Scholar

[22]

R. Potthast, A survey on sampling and probe methods for inverse problems,, Inverse Problems, 22 (2006).  doi: 10.1088/0266-5611/22/2/R01.  Google Scholar

[23]

G. Uhlmann, Inside Out: Inverse Problems and Applications,, MSRI Publications, (2003).  doi: 10.1090/conm/333.  Google Scholar

[1]

Gang Bao, Mingming Zhang, Bin Hu, Peijun Li. An adaptive finite element DtN method for the three-dimensional acoustic scattering problem. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020351

[2]

Håkon Hoel, Gaukhar Shaimerdenova, Raúl Tempone. Multilevel Ensemble Kalman Filtering based on a sample average of independent EnKF estimators. Foundations of Data Science, 2020  doi: 10.3934/fods.2020017

[3]

Shiqi Ma. On recent progress of single-realization recoveries of random Schrödinger systems. Electronic Research Archive, , () : -. doi: 10.3934/era.2020121

[4]

Gunther Uhlmann, Jian Zhai. Inverse problems for nonlinear hyperbolic equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 455-469. doi: 10.3934/dcds.2020380

[5]

Yi-Hsuan Lin, Gen Nakamura, Roland Potthast, Haibing Wang. Duality between range and no-response tests and its application for inverse problems. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020072

[6]

Kha Van Huynh, Barbara Kaltenbacher. Some application examples of minimization based formulations of inverse problems and their regularization. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020074

[7]

Mehdi Bastani, Davod Khojasteh Salkuyeh. On the GSOR iteration method for image restoration. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 27-43. doi: 10.3934/naco.2020013

[8]

Nicolas Rougerie. On two properties of the Fisher information. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020049

[9]

Wenbin Li, Jianliang Qian. Simultaneously recovering both domain and varying density in inverse gravimetry by efficient level-set methods. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020073

[10]

Hong Niu, Zhijiang Feng, Qijin Xiao, Yajun Zhang. A PID control method based on optimal control strategy. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 117-126. doi: 10.3934/naco.2020019

[11]

Hua Qiu, Zheng-An Yao. The regularized Boussinesq equations with partial dissipations in dimension two. Electronic Research Archive, 2020, 28 (4) : 1375-1393. doi: 10.3934/era.2020073

[12]

Huu-Quang Nguyen, Ya-Chi Chu, Ruey-Lin Sheu. On the convexity for the range set of two quadratic functions. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020169

[13]

Li-Bin Liu, Ying Liang, Jian Zhang, Xiaobing Bao. A robust adaptive grid method for singularly perturbed Burger-Huxley equations. Electronic Research Archive, 2020, 28 (4) : 1439-1457. doi: 10.3934/era.2020076

[14]

Zexuan Liu, Zhiyuan Sun, Jerry Zhijian Yang. A numerical study of superconvergence of the discontinuous Galerkin method by patch reconstruction. Electronic Research Archive, 2020, 28 (4) : 1487-1501. doi: 10.3934/era.2020078

[15]

Yuxia Guo, Shaolong Peng. A direct method of moving planes for fully nonlinear nonlocal operators and applications. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020462

[16]

Noah Stevenson, Ian Tice. A truncated real interpolation method and characterizations of screened Sobolev spaces. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5509-5566. doi: 10.3934/cpaa.2020250

[17]

Yue Feng, Yujie Liu, Ruishu Wang, Shangyou Zhang. A conforming discontinuous Galerkin finite element method on rectangular partitions. Electronic Research Archive, , () : -. doi: 10.3934/era.2020120

[18]

Cheng He, Changzheng Qu. Global weak solutions for the two-component Novikov equation. Electronic Research Archive, 2020, 28 (4) : 1545-1562. doi: 10.3934/era.2020081

[19]

Manil T. Mohan. First order necessary conditions of optimality for the two dimensional tidal dynamics system. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020045

[20]

João Marcos do Ó, Bruno Ribeiro, Bernhard Ruf. Hamiltonian elliptic systems in dimension two with arbitrary and double exponential growth conditions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 277-296. doi: 10.3934/dcds.2020138

2019 Impact Factor: 1.233

Metrics

  • PDF downloads (37)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]