June  2015, 8(3): 563-577. doi: 10.3934/dcdss.2015.8.563

The factorization method for scatterers with different physical properties

1. 

Institute of Applied Mathematics, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing, 100190, China

Received  November 2013 Revised  January 2014 Published  October 2014

The scattering of time-harmonic acoustic plane waves by a mixed type scatterer is considered. Such a scatterer is given as the union of several components with different physical properties. Some of them are impenetrable obstacles with Dirichlet or impedance boundary conditions, while the others are penetrable inhomogeneous media with compact support. This paper is concerned with modifications of the factorization method for the following two basic cases, one is the scattering by a priori separated sound-soft and sound-hard obstacles, the other one is the scattering by a scatterer with impenetrable (Dirichlet) and penetrable components. The other cases can be dealt with similarly. Finally, some numerical experiments are presented to demonstrate the feasibility and effectiveness of the modified factorization methods.
Citation: Xiaodong Liu. The factorization method for scatterers with different physical properties. Discrete and Continuous Dynamical Systems - S, 2015, 8 (3) : 563-577. doi: 10.3934/dcdss.2015.8.563
References:
[1]

O. Bondarenko, A. Kirsch and X. Liu, The Factorization method for inverse acoustic scattering in a layered medium, Inverse Problems, 29 (2013), 045010. doi: 10.1088/0266-5611/29/4/045010.

[2]

O. Bondarenko and X. Liu, The Factorization method for inverse obstacle scattering with conductive boundary condition, Inverse Problems, 29 (2013), 095021. doi: 10.1088/0266-5611/29/9/095021.

[3]

D. Colton and R. Kress, Inverse Acoustic and Electromagnetic Scattering Theory, 3rd Edition, Springer, 2012. doi: 10.1007/978-1-4614-4942-3.

[4]

N. Grinberg and A. Kirsch, The Linear sampling method in inverse obstacle scattering for impedance boundary conditions, Journal of Inverse and Ill-Posed Problems, 10 (2002), 171-185. doi: 10.1515/jiip.2002.10.2.171.

[5]

N. Grinberg and A. Kirsch, The factorization method for obstacles with a-prior separated sound-soft and sound-hard parts, Math. Comput. in Simul., 66, (2004), 267-279. doi: 10.1016/j.matcom.2004.02.011.

[6]

A. Kirsch, Charaterization of the shape of a scattering obstacle using the spectral data of the far field operator, Inverse Problems, 14 (1998), 1489-1512. doi: 10.1088/0266-5611/14/6/009.

[7]

A. Kirsch, Factorization of the far field operator for the inhomogeneous medium case and an application in inverse scattering theory, Inverse Problems, 15 (1999), 413-429. doi: 10.1088/0266-5611/15/2/005.

[8]

A. Kirsch, The MUSIC-algorithm and the factorization method in inverse scattering theory for inhomogeneous media, Inverse Problems, 18 (2002), 1025-1040. doi: 10.1088/0266-5611/18/4/306.

[9]

A. Kirsch, An introduction to the Mathematical Theory of Inverse Problems, 2nd Edition, Springer, 2011. doi: 10.1007/978-1-4419-8474-6.

[10]

A. Kirsch and N. Grinberg, The Factorization Method for Inverse Problems, Oxford University Press, 2008.

[11]

A. Kirsch and X. Liu, The factorization method for inverse acoustic scattering by a penetrable anisotropic obstacle, Math. Meth. Appl. Sci., 37 (2014), 1159-1170. doi: 10.1002/mma.2877.

[12]

A. Kirsch and X. Liu, Direct and inverse acoustic scattering by a mixed-type scatterer, Inverse Problems, 29 (2013), 065005. doi: 10.1088/0266-5611/29/6/065005.

[13]

A. Kirsch and X. Liu, A modification of the factorization method for the classical acoustic inverse scattering problems, Inverse Problems, 30 (2014), 035013. doi: 10.1088/0266-5611/30/3/035013.

[14]

A. Lechleiter, The factorization method is independent of transmission eigenvalues, Inverse Problems Imaging, 3 (2009), 123-138. doi: 10.3934/ipi.2009.3.123.

[15]

X. Liu, The factorization method for cavities, Inverse Problems, 30 (2014), 015006. doi: 10.1088/0266-5611/30/1/015006.

[16]

W. Mclean, Strongly Elliptic Systems and Boundary Integral Equation, Cambridge University Press, Cambridge, 2000.

[17]

D. L. Nguyen, Spectral Methods for Direct and Inverse Scattering from Periodic Structures, PhD thesis, Ecole Polytechnique X, Paris, 2012.

[18]

J. Yang, B. Zhang and H. Zhang, The factorization method for reconstructing a penetrable obstacle with unknown buried objects, SIAM J. Appl. Math., 73 (2013), 617-635. doi: 10.1137/120883724.

show all references

References:
[1]

O. Bondarenko, A. Kirsch and X. Liu, The Factorization method for inverse acoustic scattering in a layered medium, Inverse Problems, 29 (2013), 045010. doi: 10.1088/0266-5611/29/4/045010.

[2]

O. Bondarenko and X. Liu, The Factorization method for inverse obstacle scattering with conductive boundary condition, Inverse Problems, 29 (2013), 095021. doi: 10.1088/0266-5611/29/9/095021.

[3]

D. Colton and R. Kress, Inverse Acoustic and Electromagnetic Scattering Theory, 3rd Edition, Springer, 2012. doi: 10.1007/978-1-4614-4942-3.

[4]

N. Grinberg and A. Kirsch, The Linear sampling method in inverse obstacle scattering for impedance boundary conditions, Journal of Inverse and Ill-Posed Problems, 10 (2002), 171-185. doi: 10.1515/jiip.2002.10.2.171.

[5]

N. Grinberg and A. Kirsch, The factorization method for obstacles with a-prior separated sound-soft and sound-hard parts, Math. Comput. in Simul., 66, (2004), 267-279. doi: 10.1016/j.matcom.2004.02.011.

[6]

A. Kirsch, Charaterization of the shape of a scattering obstacle using the spectral data of the far field operator, Inverse Problems, 14 (1998), 1489-1512. doi: 10.1088/0266-5611/14/6/009.

[7]

A. Kirsch, Factorization of the far field operator for the inhomogeneous medium case and an application in inverse scattering theory, Inverse Problems, 15 (1999), 413-429. doi: 10.1088/0266-5611/15/2/005.

[8]

A. Kirsch, The MUSIC-algorithm and the factorization method in inverse scattering theory for inhomogeneous media, Inverse Problems, 18 (2002), 1025-1040. doi: 10.1088/0266-5611/18/4/306.

[9]

A. Kirsch, An introduction to the Mathematical Theory of Inverse Problems, 2nd Edition, Springer, 2011. doi: 10.1007/978-1-4419-8474-6.

[10]

A. Kirsch and N. Grinberg, The Factorization Method for Inverse Problems, Oxford University Press, 2008.

[11]

A. Kirsch and X. Liu, The factorization method for inverse acoustic scattering by a penetrable anisotropic obstacle, Math. Meth. Appl. Sci., 37 (2014), 1159-1170. doi: 10.1002/mma.2877.

[12]

A. Kirsch and X. Liu, Direct and inverse acoustic scattering by a mixed-type scatterer, Inverse Problems, 29 (2013), 065005. doi: 10.1088/0266-5611/29/6/065005.

[13]

A. Kirsch and X. Liu, A modification of the factorization method for the classical acoustic inverse scattering problems, Inverse Problems, 30 (2014), 035013. doi: 10.1088/0266-5611/30/3/035013.

[14]

A. Lechleiter, The factorization method is independent of transmission eigenvalues, Inverse Problems Imaging, 3 (2009), 123-138. doi: 10.3934/ipi.2009.3.123.

[15]

X. Liu, The factorization method for cavities, Inverse Problems, 30 (2014), 015006. doi: 10.1088/0266-5611/30/1/015006.

[16]

W. Mclean, Strongly Elliptic Systems and Boundary Integral Equation, Cambridge University Press, Cambridge, 2000.

[17]

D. L. Nguyen, Spectral Methods for Direct and Inverse Scattering from Periodic Structures, PhD thesis, Ecole Polytechnique X, Paris, 2012.

[18]

J. Yang, B. Zhang and H. Zhang, The factorization method for reconstructing a penetrable obstacle with unknown buried objects, SIAM J. Appl. Math., 73 (2013), 617-635. doi: 10.1137/120883724.

[1]

Jun Lai, Ming Li, Peijun Li, Wei Li. A fast direct imaging method for the inverse obstacle scattering problem with nonlinear point scatterers. Inverse Problems and Imaging, 2018, 12 (3) : 635-665. doi: 10.3934/ipi.2018027

[2]

Bastian Gebauer, Nuutti Hyvönen. Factorization method and inclusions of mixed type in an inverse elliptic boundary value problem. Inverse Problems and Imaging, 2008, 2 (3) : 355-372. doi: 10.3934/ipi.2008.2.355

[3]

Giorgio Menegatti, Luca Rondi. Stability for the acoustic scattering problem for sound-hard scatterers. Inverse Problems and Imaging, 2013, 7 (4) : 1307-1329. doi: 10.3934/ipi.2013.7.1307

[4]

Jun Guo, Qinghua Wu, Guozheng Yan. The factorization method for cracks in elastic scattering. Inverse Problems and Imaging, 2018, 12 (2) : 349-371. doi: 10.3934/ipi.2018016

[5]

Hongyu Liu, Jun Zou. Uniqueness in determining multiple polygonal scatterers of mixed type. Discrete and Continuous Dynamical Systems - B, 2008, 9 (2) : 375-396. doi: 10.3934/dcdsb.2008.9.375

[6]

Lu Zhao, Heping Dong, Fuming Ma. Inverse obstacle scattering for acoustic waves in the time domain. Inverse Problems and Imaging, 2021, 15 (5) : 1269-1286. doi: 10.3934/ipi.2021037

[7]

Fenglong Qu, Jiaqing Yang. On recovery of an inhomogeneous cavity in inverse acoustic scattering. Inverse Problems and Imaging, 2018, 12 (2) : 281-291. doi: 10.3934/ipi.2018012

[8]

Weishi Yin, Jiawei Ge, Pinchao Meng, Fuheng Qu. A neural network method for the inverse scattering problem of impenetrable cavities. Electronic Research Archive, 2020, 28 (2) : 1123-1142. doi: 10.3934/era.2020062

[9]

Qinghua Wu, Guozheng Yan. The factorization method for a partially coated cavity in inverse scattering. Inverse Problems and Imaging, 2016, 10 (1) : 263-279. doi: 10.3934/ipi.2016.10.263

[10]

Brian Sleeman. The inverse acoustic obstacle scattering problem and its interior dual. Inverse Problems and Imaging, 2009, 3 (2) : 211-229. doi: 10.3934/ipi.2009.3.211

[11]

Mourad Sini, Nguyen Trung Thành. Inverse acoustic obstacle scattering problems using multifrequency measurements. Inverse Problems and Imaging, 2012, 6 (4) : 749-773. doi: 10.3934/ipi.2012.6.749

[12]

Fang Zeng, Xiaodong Liu, Jiguang Sun, Liwei Xu. The reciprocity gap method for a cavity in an inhomogeneous medium. Inverse Problems and Imaging, 2016, 10 (3) : 855-868. doi: 10.3934/ipi.2016024

[13]

Andreas Kirsch, Albert Ruiz. The Factorization Method for an inverse fluid-solid interaction scattering problem. Inverse Problems and Imaging, 2012, 6 (4) : 681-695. doi: 10.3934/ipi.2012.6.681

[14]

Masaru Ikehata, Mishio Kawashita. On finding a buried obstacle in a layered medium via the time domain enclosure method. Inverse Problems and Imaging, 2018, 12 (5) : 1173-1198. doi: 10.3934/ipi.2018049

[15]

Keji Liu. Scattering by impenetrable scatterer in a stratified ocean waveguide. Inverse Problems and Imaging, 2019, 13 (6) : 1349-1365. doi: 10.3934/ipi.2019059

[16]

Jianliang Li, Jiaqing Yang, Bo Zhang. A linear sampling method for inverse acoustic scattering by a locally rough interface. Inverse Problems and Imaging, 2021, 15 (5) : 1247-1267. doi: 10.3934/ipi.2021036

[17]

Guanghui Hu, Andreas Kirsch, Tao Yin. Factorization method in inverse interaction problems with bi-periodic interfaces between acoustic and elastic waves. Inverse Problems and Imaging, 2016, 10 (1) : 103-129. doi: 10.3934/ipi.2016.10.103

[18]

Jiangfeng Huang, Zhiliang Deng, Liwei Xu. A Bayesian level set method for an inverse medium scattering problem in acoustics. Inverse Problems and Imaging, 2021, 15 (5) : 1077-1097. doi: 10.3934/ipi.2021029

[19]

Houssem Haddar, Alexander Konschin. Factorization method for imaging a local perturbation in inhomogeneous periodic layers from far field measurements. Inverse Problems and Imaging, 2020, 14 (1) : 133-152. doi: 10.3934/ipi.2019067

[20]

Guanqiu Ma, Guanghui Hu. Factorization method for inverse time-harmonic elastic scattering with a single plane wave. Discrete and Continuous Dynamical Systems - B, 2022  doi: 10.3934/dcdsb.2022050

2020 Impact Factor: 2.425

Metrics

  • PDF downloads (186)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]