-
Previous Article
Optimal control of magnetic fields in flow measurement
- DCDS-S Home
- This Issue
-
Next Article
Fast imaging of electromagnetic scatterers by a two-stage multilevel sampling method
The factorization method for scatterers with different physical properties
1. | Institute of Applied Mathematics, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing, 100190, China |
References:
[1] |
O. Bondarenko, A. Kirsch and X. Liu, The Factorization method for inverse acoustic scattering in a layered medium,, Inverse Problems, 29 (2013).
doi: 10.1088/0266-5611/29/4/045010. |
[2] |
O. Bondarenko and X. Liu, The Factorization method for inverse obstacle scattering with conductive boundary condition,, Inverse Problems, 29 (2013).
doi: 10.1088/0266-5611/29/9/095021. |
[3] |
D. Colton and R. Kress, Inverse Acoustic and Electromagnetic Scattering Theory,, 3rd Edition, (2012).
doi: 10.1007/978-1-4614-4942-3. |
[4] |
N. Grinberg and A. Kirsch, The Linear sampling method in inverse obstacle scattering for impedance boundary conditions,, Journal of Inverse and Ill-Posed Problems, 10 (2002), 171.
doi: 10.1515/jiip.2002.10.2.171. |
[5] |
N. Grinberg and A. Kirsch, The factorization method for obstacles with a-prior separated sound-soft and sound-hard parts,, Math. Comput. in Simul., 66 (2004), 267.
doi: 10.1016/j.matcom.2004.02.011. |
[6] |
A. Kirsch, Charaterization of the shape of a scattering obstacle using the spectral data of the far field operator,, Inverse Problems, 14 (1998), 1489.
doi: 10.1088/0266-5611/14/6/009. |
[7] |
A. Kirsch, Factorization of the far field operator for the inhomogeneous medium case and an application in inverse scattering theory,, Inverse Problems, 15 (1999), 413.
doi: 10.1088/0266-5611/15/2/005. |
[8] |
A. Kirsch, The MUSIC-algorithm and the factorization method in inverse scattering theory for inhomogeneous media,, Inverse Problems, 18 (2002), 1025.
doi: 10.1088/0266-5611/18/4/306. |
[9] |
A. Kirsch, An introduction to the Mathematical Theory of Inverse Problems,, 2nd Edition, (2011).
doi: 10.1007/978-1-4419-8474-6. |
[10] |
A. Kirsch and N. Grinberg, The Factorization Method for Inverse Problems,, Oxford University Press, (2008).
|
[11] |
A. Kirsch and X. Liu, The factorization method for inverse acoustic scattering by a penetrable anisotropic obstacle,, Math. Meth. Appl. Sci., 37 (2014), 1159.
doi: 10.1002/mma.2877. |
[12] |
A. Kirsch and X. Liu, Direct and inverse acoustic scattering by a mixed-type scatterer,, Inverse Problems, 29 (2013).
doi: 10.1088/0266-5611/29/6/065005. |
[13] |
A. Kirsch and X. Liu, A modification of the factorization method for the classical acoustic inverse scattering problems,, Inverse Problems, 30 (2014).
doi: 10.1088/0266-5611/30/3/035013. |
[14] |
A. Lechleiter, The factorization method is independent of transmission eigenvalues,, Inverse Problems Imaging, 3 (2009), 123.
doi: 10.3934/ipi.2009.3.123. |
[15] |
X. Liu, The factorization method for cavities,, Inverse Problems, 30 (2014).
doi: 10.1088/0266-5611/30/1/015006. |
[16] |
W. Mclean, Strongly Elliptic Systems and Boundary Integral Equation,, Cambridge University Press, (2000).
|
[17] |
D. L. Nguyen, Spectral Methods for Direct and Inverse Scattering from Periodic Structures,, PhD thesis, (2012). Google Scholar |
[18] |
J. Yang, B. Zhang and H. Zhang, The factorization method for reconstructing a penetrable obstacle with unknown buried objects,, SIAM J. Appl. Math., 73 (2013), 617.
doi: 10.1137/120883724. |
show all references
References:
[1] |
O. Bondarenko, A. Kirsch and X. Liu, The Factorization method for inverse acoustic scattering in a layered medium,, Inverse Problems, 29 (2013).
doi: 10.1088/0266-5611/29/4/045010. |
[2] |
O. Bondarenko and X. Liu, The Factorization method for inverse obstacle scattering with conductive boundary condition,, Inverse Problems, 29 (2013).
doi: 10.1088/0266-5611/29/9/095021. |
[3] |
D. Colton and R. Kress, Inverse Acoustic and Electromagnetic Scattering Theory,, 3rd Edition, (2012).
doi: 10.1007/978-1-4614-4942-3. |
[4] |
N. Grinberg and A. Kirsch, The Linear sampling method in inverse obstacle scattering for impedance boundary conditions,, Journal of Inverse and Ill-Posed Problems, 10 (2002), 171.
doi: 10.1515/jiip.2002.10.2.171. |
[5] |
N. Grinberg and A. Kirsch, The factorization method for obstacles with a-prior separated sound-soft and sound-hard parts,, Math. Comput. in Simul., 66 (2004), 267.
doi: 10.1016/j.matcom.2004.02.011. |
[6] |
A. Kirsch, Charaterization of the shape of a scattering obstacle using the spectral data of the far field operator,, Inverse Problems, 14 (1998), 1489.
doi: 10.1088/0266-5611/14/6/009. |
[7] |
A. Kirsch, Factorization of the far field operator for the inhomogeneous medium case and an application in inverse scattering theory,, Inverse Problems, 15 (1999), 413.
doi: 10.1088/0266-5611/15/2/005. |
[8] |
A. Kirsch, The MUSIC-algorithm and the factorization method in inverse scattering theory for inhomogeneous media,, Inverse Problems, 18 (2002), 1025.
doi: 10.1088/0266-5611/18/4/306. |
[9] |
A. Kirsch, An introduction to the Mathematical Theory of Inverse Problems,, 2nd Edition, (2011).
doi: 10.1007/978-1-4419-8474-6. |
[10] |
A. Kirsch and N. Grinberg, The Factorization Method for Inverse Problems,, Oxford University Press, (2008).
|
[11] |
A. Kirsch and X. Liu, The factorization method for inverse acoustic scattering by a penetrable anisotropic obstacle,, Math. Meth. Appl. Sci., 37 (2014), 1159.
doi: 10.1002/mma.2877. |
[12] |
A. Kirsch and X. Liu, Direct and inverse acoustic scattering by a mixed-type scatterer,, Inverse Problems, 29 (2013).
doi: 10.1088/0266-5611/29/6/065005. |
[13] |
A. Kirsch and X. Liu, A modification of the factorization method for the classical acoustic inverse scattering problems,, Inverse Problems, 30 (2014).
doi: 10.1088/0266-5611/30/3/035013. |
[14] |
A. Lechleiter, The factorization method is independent of transmission eigenvalues,, Inverse Problems Imaging, 3 (2009), 123.
doi: 10.3934/ipi.2009.3.123. |
[15] |
X. Liu, The factorization method for cavities,, Inverse Problems, 30 (2014).
doi: 10.1088/0266-5611/30/1/015006. |
[16] |
W. Mclean, Strongly Elliptic Systems and Boundary Integral Equation,, Cambridge University Press, (2000).
|
[17] |
D. L. Nguyen, Spectral Methods for Direct and Inverse Scattering from Periodic Structures,, PhD thesis, (2012). Google Scholar |
[18] |
J. Yang, B. Zhang and H. Zhang, The factorization method for reconstructing a penetrable obstacle with unknown buried objects,, SIAM J. Appl. Math., 73 (2013), 617.
doi: 10.1137/120883724. |
[1] |
Gang Bao, Mingming Zhang, Bin Hu, Peijun Li. An adaptive finite element DtN method for the three-dimensional acoustic scattering problem. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 61-79. doi: 10.3934/dcdsb.2020351 |
[2] |
Jianli Xiang, Guozheng Yan. The uniqueness of the inverse elastic wave scattering problem based on the mixed reciprocity relation. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2021004 |
[3] |
João Vitor da Silva, Hernán Vivas. Sharp regularity for degenerate obstacle type problems: A geometric approach. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1359-1385. doi: 10.3934/dcds.2020321 |
[4] |
Kai Zhang, Xiaoqi Yang, Song Wang. Solution method for discrete double obstacle problems based on a power penalty approach. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2021018 |
[5] |
Ying Liu, Yanping Chen, Yunqing Huang, Yang Wang. Two-grid method for semiconductor device problem by mixed finite element method and characteristics finite element method. Electronic Research Archive, 2021, 29 (1) : 1859-1880. doi: 10.3934/era.2020095 |
[6] |
Yunfeng Jia, Yi Li, Jianhua Wu, Hong-Kun Xu. Cauchy problem of semilinear inhomogeneous elliptic equations of Matukuma-type with multiple growth terms. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3485-3507. doi: 10.3934/dcds.2019227 |
[7] |
Norman Noguera, Ademir Pastor. Scattering of radial solutions for quadratic-type Schrödinger systems in dimension five. Discrete & Continuous Dynamical Systems - A, 2021 doi: 10.3934/dcds.2021018 |
[8] |
Wenya Qi, Padmanabhan Seshaiyer, Junping Wang. A four-field mixed finite element method for Biot's consolidation problems. Electronic Research Archive, , () : -. doi: 10.3934/era.2020127 |
[9] |
Hassan Mohammad. A diagonal PRP-type projection method for convex constrained nonlinear monotone equations. Journal of Industrial & Management Optimization, 2021, 17 (1) : 101-116. doi: 10.3934/jimo.2019101 |
[10] |
Sujit Kumar Samanta, Rakesh Nandi. Analysis of $GI^{[X]}/D$-$MSP/1/\infty$ queue using $RG$-factorization. Journal of Industrial & Management Optimization, 2021, 17 (2) : 549-573. doi: 10.3934/jimo.2019123 |
[11] |
Shao-Xia Qiao, Li-Jun Du. Propagation dynamics of nonlocal dispersal equations with inhomogeneous bistable nonlinearity. Electronic Research Archive, , () : -. doi: 10.3934/era.2020116 |
[12] |
Gloria Paoli, Gianpaolo Piscitelli, Rossanno Sannipoli. A stability result for the Steklov Laplacian Eigenvalue Problem with a spherical obstacle. Communications on Pure & Applied Analysis, 2021, 20 (1) : 145-158. doi: 10.3934/cpaa.2020261 |
[13] |
Claudia Lederman, Noemi Wolanski. An optimization problem with volume constraint for an inhomogeneous operator with nonstandard growth. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020391 |
[14] |
Jérôme Lohéac, Chaouki N. E. Boultifat, Philippe Chevrel, Mohamed Yagoubi. Exact noise cancellation for 1d-acoustic propagation systems. Mathematical Control & Related Fields, 2020 doi: 10.3934/mcrf.2020055 |
[15] |
Xuefei He, Kun Wang, Liwei Xu. Efficient finite difference methods for the nonlinear Helmholtz equation in Kerr medium. Electronic Research Archive, 2020, 28 (4) : 1503-1528. doi: 10.3934/era.2020079 |
[16] |
Juliana Fernandes, Liliane Maia. Blow-up and bounded solutions for a semilinear parabolic problem in a saturable medium. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1297-1318. doi: 10.3934/dcds.2020318 |
[17] |
Josselin Garnier, Knut Sølna. Enhanced Backscattering of a partially coherent field from an anisotropic random lossy medium. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 1171-1195. doi: 10.3934/dcdsb.2020158 |
[18] |
Xinlin Cao, Huaian Diao, Jinhong Li. Some recent progress on inverse scattering problems within general polyhedral geometry. Electronic Research Archive, 2021, 29 (1) : 1753-1782. doi: 10.3934/era.2020090 |
[19] |
Omid Nikan, Seyedeh Mahboubeh Molavi-Arabshai, Hossein Jafari. Numerical simulation of the nonlinear fractional regularized long-wave model arising in ion acoustic plasma waves. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020466 |
[20] |
Alex H. Ardila, Mykael Cardoso. Blow-up solutions and strong instability of ground states for the inhomogeneous nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2021, 20 (1) : 101-119. doi: 10.3934/cpaa.2020259 |
2019 Impact Factor: 1.233
Tools
Metrics
Other articles
by authors
[Back to Top]