June  2015, 8(3): 563-577. doi: 10.3934/dcdss.2015.8.563

The factorization method for scatterers with different physical properties

1. 

Institute of Applied Mathematics, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing, 100190, China

Received  November 2013 Revised  January 2014 Published  October 2014

The scattering of time-harmonic acoustic plane waves by a mixed type scatterer is considered. Such a scatterer is given as the union of several components with different physical properties. Some of them are impenetrable obstacles with Dirichlet or impedance boundary conditions, while the others are penetrable inhomogeneous media with compact support. This paper is concerned with modifications of the factorization method for the following two basic cases, one is the scattering by a priori separated sound-soft and sound-hard obstacles, the other one is the scattering by a scatterer with impenetrable (Dirichlet) and penetrable components. The other cases can be dealt with similarly. Finally, some numerical experiments are presented to demonstrate the feasibility and effectiveness of the modified factorization methods.
Citation: Xiaodong Liu. The factorization method for scatterers with different physical properties. Discrete & Continuous Dynamical Systems - S, 2015, 8 (3) : 563-577. doi: 10.3934/dcdss.2015.8.563
References:
[1]

O. Bondarenko, A. Kirsch and X. Liu, The Factorization method for inverse acoustic scattering in a layered medium,, Inverse Problems, 29 (2013).  doi: 10.1088/0266-5611/29/4/045010.  Google Scholar

[2]

O. Bondarenko and X. Liu, The Factorization method for inverse obstacle scattering with conductive boundary condition,, Inverse Problems, 29 (2013).  doi: 10.1088/0266-5611/29/9/095021.  Google Scholar

[3]

D. Colton and R. Kress, Inverse Acoustic and Electromagnetic Scattering Theory,, 3rd Edition, (2012).  doi: 10.1007/978-1-4614-4942-3.  Google Scholar

[4]

N. Grinberg and A. Kirsch, The Linear sampling method in inverse obstacle scattering for impedance boundary conditions,, Journal of Inverse and Ill-Posed Problems, 10 (2002), 171.  doi: 10.1515/jiip.2002.10.2.171.  Google Scholar

[5]

N. Grinberg and A. Kirsch, The factorization method for obstacles with a-prior separated sound-soft and sound-hard parts,, Math. Comput. in Simul., 66 (2004), 267.  doi: 10.1016/j.matcom.2004.02.011.  Google Scholar

[6]

A. Kirsch, Charaterization of the shape of a scattering obstacle using the spectral data of the far field operator,, Inverse Problems, 14 (1998), 1489.  doi: 10.1088/0266-5611/14/6/009.  Google Scholar

[7]

A. Kirsch, Factorization of the far field operator for the inhomogeneous medium case and an application in inverse scattering theory,, Inverse Problems, 15 (1999), 413.  doi: 10.1088/0266-5611/15/2/005.  Google Scholar

[8]

A. Kirsch, The MUSIC-algorithm and the factorization method in inverse scattering theory for inhomogeneous media,, Inverse Problems, 18 (2002), 1025.  doi: 10.1088/0266-5611/18/4/306.  Google Scholar

[9]

A. Kirsch, An introduction to the Mathematical Theory of Inverse Problems,, 2nd Edition, (2011).  doi: 10.1007/978-1-4419-8474-6.  Google Scholar

[10]

A. Kirsch and N. Grinberg, The Factorization Method for Inverse Problems,, Oxford University Press, (2008).   Google Scholar

[11]

A. Kirsch and X. Liu, The factorization method for inverse acoustic scattering by a penetrable anisotropic obstacle,, Math. Meth. Appl. Sci., 37 (2014), 1159.  doi: 10.1002/mma.2877.  Google Scholar

[12]

A. Kirsch and X. Liu, Direct and inverse acoustic scattering by a mixed-type scatterer,, Inverse Problems, 29 (2013).  doi: 10.1088/0266-5611/29/6/065005.  Google Scholar

[13]

A. Kirsch and X. Liu, A modification of the factorization method for the classical acoustic inverse scattering problems,, Inverse Problems, 30 (2014).  doi: 10.1088/0266-5611/30/3/035013.  Google Scholar

[14]

A. Lechleiter, The factorization method is independent of transmission eigenvalues,, Inverse Problems Imaging, 3 (2009), 123.  doi: 10.3934/ipi.2009.3.123.  Google Scholar

[15]

X. Liu, The factorization method for cavities,, Inverse Problems, 30 (2014).  doi: 10.1088/0266-5611/30/1/015006.  Google Scholar

[16]

W. Mclean, Strongly Elliptic Systems and Boundary Integral Equation,, Cambridge University Press, (2000).   Google Scholar

[17]

D. L. Nguyen, Spectral Methods for Direct and Inverse Scattering from Periodic Structures,, PhD thesis, (2012).   Google Scholar

[18]

J. Yang, B. Zhang and H. Zhang, The factorization method for reconstructing a penetrable obstacle with unknown buried objects,, SIAM J. Appl. Math., 73 (2013), 617.  doi: 10.1137/120883724.  Google Scholar

show all references

References:
[1]

O. Bondarenko, A. Kirsch and X. Liu, The Factorization method for inverse acoustic scattering in a layered medium,, Inverse Problems, 29 (2013).  doi: 10.1088/0266-5611/29/4/045010.  Google Scholar

[2]

O. Bondarenko and X. Liu, The Factorization method for inverse obstacle scattering with conductive boundary condition,, Inverse Problems, 29 (2013).  doi: 10.1088/0266-5611/29/9/095021.  Google Scholar

[3]

D. Colton and R. Kress, Inverse Acoustic and Electromagnetic Scattering Theory,, 3rd Edition, (2012).  doi: 10.1007/978-1-4614-4942-3.  Google Scholar

[4]

N. Grinberg and A. Kirsch, The Linear sampling method in inverse obstacle scattering for impedance boundary conditions,, Journal of Inverse and Ill-Posed Problems, 10 (2002), 171.  doi: 10.1515/jiip.2002.10.2.171.  Google Scholar

[5]

N. Grinberg and A. Kirsch, The factorization method for obstacles with a-prior separated sound-soft and sound-hard parts,, Math. Comput. in Simul., 66 (2004), 267.  doi: 10.1016/j.matcom.2004.02.011.  Google Scholar

[6]

A. Kirsch, Charaterization of the shape of a scattering obstacle using the spectral data of the far field operator,, Inverse Problems, 14 (1998), 1489.  doi: 10.1088/0266-5611/14/6/009.  Google Scholar

[7]

A. Kirsch, Factorization of the far field operator for the inhomogeneous medium case and an application in inverse scattering theory,, Inverse Problems, 15 (1999), 413.  doi: 10.1088/0266-5611/15/2/005.  Google Scholar

[8]

A. Kirsch, The MUSIC-algorithm and the factorization method in inverse scattering theory for inhomogeneous media,, Inverse Problems, 18 (2002), 1025.  doi: 10.1088/0266-5611/18/4/306.  Google Scholar

[9]

A. Kirsch, An introduction to the Mathematical Theory of Inverse Problems,, 2nd Edition, (2011).  doi: 10.1007/978-1-4419-8474-6.  Google Scholar

[10]

A. Kirsch and N. Grinberg, The Factorization Method for Inverse Problems,, Oxford University Press, (2008).   Google Scholar

[11]

A. Kirsch and X. Liu, The factorization method for inverse acoustic scattering by a penetrable anisotropic obstacle,, Math. Meth. Appl. Sci., 37 (2014), 1159.  doi: 10.1002/mma.2877.  Google Scholar

[12]

A. Kirsch and X. Liu, Direct and inverse acoustic scattering by a mixed-type scatterer,, Inverse Problems, 29 (2013).  doi: 10.1088/0266-5611/29/6/065005.  Google Scholar

[13]

A. Kirsch and X. Liu, A modification of the factorization method for the classical acoustic inverse scattering problems,, Inverse Problems, 30 (2014).  doi: 10.1088/0266-5611/30/3/035013.  Google Scholar

[14]

A. Lechleiter, The factorization method is independent of transmission eigenvalues,, Inverse Problems Imaging, 3 (2009), 123.  doi: 10.3934/ipi.2009.3.123.  Google Scholar

[15]

X. Liu, The factorization method for cavities,, Inverse Problems, 30 (2014).  doi: 10.1088/0266-5611/30/1/015006.  Google Scholar

[16]

W. Mclean, Strongly Elliptic Systems and Boundary Integral Equation,, Cambridge University Press, (2000).   Google Scholar

[17]

D. L. Nguyen, Spectral Methods for Direct and Inverse Scattering from Periodic Structures,, PhD thesis, (2012).   Google Scholar

[18]

J. Yang, B. Zhang and H. Zhang, The factorization method for reconstructing a penetrable obstacle with unknown buried objects,, SIAM J. Appl. Math., 73 (2013), 617.  doi: 10.1137/120883724.  Google Scholar

[1]

Gang Bao, Mingming Zhang, Bin Hu, Peijun Li. An adaptive finite element DtN method for the three-dimensional acoustic scattering problem. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 61-79. doi: 10.3934/dcdsb.2020351

[2]

Jianli Xiang, Guozheng Yan. The uniqueness of the inverse elastic wave scattering problem based on the mixed reciprocity relation. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2021004

[3]

João Vitor da Silva, Hernán Vivas. Sharp regularity for degenerate obstacle type problems: A geometric approach. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1359-1385. doi: 10.3934/dcds.2020321

[4]

Kai Zhang, Xiaoqi Yang, Song Wang. Solution method for discrete double obstacle problems based on a power penalty approach. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2021018

[5]

Ying Liu, Yanping Chen, Yunqing Huang, Yang Wang. Two-grid method for semiconductor device problem by mixed finite element method and characteristics finite element method. Electronic Research Archive, 2021, 29 (1) : 1859-1880. doi: 10.3934/era.2020095

[6]

Yunfeng Jia, Yi Li, Jianhua Wu, Hong-Kun Xu. Cauchy problem of semilinear inhomogeneous elliptic equations of Matukuma-type with multiple growth terms. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3485-3507. doi: 10.3934/dcds.2019227

[7]

Norman Noguera, Ademir Pastor. Scattering of radial solutions for quadratic-type Schrödinger systems in dimension five. Discrete & Continuous Dynamical Systems - A, 2021  doi: 10.3934/dcds.2021018

[8]

Wenya Qi, Padmanabhan Seshaiyer, Junping Wang. A four-field mixed finite element method for Biot's consolidation problems. Electronic Research Archive, , () : -. doi: 10.3934/era.2020127

[9]

Hassan Mohammad. A diagonal PRP-type projection method for convex constrained nonlinear monotone equations. Journal of Industrial & Management Optimization, 2021, 17 (1) : 101-116. doi: 10.3934/jimo.2019101

[10]

Sujit Kumar Samanta, Rakesh Nandi. Analysis of $GI^{[X]}/D$-$MSP/1/\infty$ queue using $RG$-factorization. Journal of Industrial & Management Optimization, 2021, 17 (2) : 549-573. doi: 10.3934/jimo.2019123

[11]

Shao-Xia Qiao, Li-Jun Du. Propagation dynamics of nonlocal dispersal equations with inhomogeneous bistable nonlinearity. Electronic Research Archive, , () : -. doi: 10.3934/era.2020116

[12]

Gloria Paoli, Gianpaolo Piscitelli, Rossanno Sannipoli. A stability result for the Steklov Laplacian Eigenvalue Problem with a spherical obstacle. Communications on Pure & Applied Analysis, 2021, 20 (1) : 145-158. doi: 10.3934/cpaa.2020261

[13]

Claudia Lederman, Noemi Wolanski. An optimization problem with volume constraint for an inhomogeneous operator with nonstandard growth. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020391

[14]

Jérôme Lohéac, Chaouki N. E. Boultifat, Philippe Chevrel, Mohamed Yagoubi. Exact noise cancellation for 1d-acoustic propagation systems. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020055

[15]

Xuefei He, Kun Wang, Liwei Xu. Efficient finite difference methods for the nonlinear Helmholtz equation in Kerr medium. Electronic Research Archive, 2020, 28 (4) : 1503-1528. doi: 10.3934/era.2020079

[16]

Juliana Fernandes, Liliane Maia. Blow-up and bounded solutions for a semilinear parabolic problem in a saturable medium. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1297-1318. doi: 10.3934/dcds.2020318

[17]

Josselin Garnier, Knut Sølna. Enhanced Backscattering of a partially coherent field from an anisotropic random lossy medium. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 1171-1195. doi: 10.3934/dcdsb.2020158

[18]

Xinlin Cao, Huaian Diao, Jinhong Li. Some recent progress on inverse scattering problems within general polyhedral geometry. Electronic Research Archive, 2021, 29 (1) : 1753-1782. doi: 10.3934/era.2020090

[19]

Omid Nikan, Seyedeh Mahboubeh Molavi-Arabshai, Hossein Jafari. Numerical simulation of the nonlinear fractional regularized long-wave model arising in ion acoustic plasma waves. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020466

[20]

Alex H. Ardila, Mykael Cardoso. Blow-up solutions and strong instability of ground states for the inhomogeneous nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2021, 20 (1) : 101-119. doi: 10.3934/cpaa.2020259

2019 Impact Factor: 1.233

Metrics

  • PDF downloads (58)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]