August  2015, 8(4): 723-747. doi: 10.3934/dcdss.2015.8.723

The Souza-Auricchio model for shape-memory alloys

1. 

Faculty of Mathematics, University of Vienna, Oskar-Morgenstern-Platz 1, A-1090 Vienna, Austria

Received  November 2013 Revised  March 2014 Published  October 2014

Shape-memory alloys are active materials, their amazing thermo-electromechanical behavior is at the basis of a variety of innovative applications. Many models have been set forth in order to describe this complex behavior. Among these the so-called Souza-Auricchio model appears as remarkably simple in terms of mechanical assumptions yet accurate in the description of three-dimensional experiments and robust with respect to approximations. Our aim is to survey here the current literature on the Souza-Auricchio model, with a specific focus on modeling.
Citation: Diego Grandi, Ulisse Stefanelli. The Souza-Auricchio model for shape-memory alloys. Discrete & Continuous Dynamical Systems - S, 2015, 8 (4) : 723-747. doi: 10.3934/dcdss.2015.8.723
References:
[1]

T. Aiki, A model of 3D shape memory alloy materials, J. Math. Soc. Japan, 57 (2005), 903-933. doi: 10.2969/jmsj/1158241940.  Google Scholar

[2]

M. Arndt, M. Griebel and T. Roubíček, Modelling and numerical simulation of martensitic transformation in shape memory alloys, Contin. Mech. Thermodyn., 15 (2003), 463-485. doi: 10.1007/s00161-003-0127-3.  Google Scholar

[3]

M. Arrigoni, F. Auricchio, V. Cacciafesta, L. Petrini and R. Pietrabissa, Cyclic effects in shape-memory alloys: A one-dimensional continuum model, J. Phys. IV France, 11 (2001), 577-582. Google Scholar

[4]

E. Artioli, F. Auricchio and R. L. Taylor, A beam finite element for nonlinear analysis of shape memory alloy devices, in New Trends in Thin Structures: Formulation, Optimization and Coupled Problems (eds. P. Wriggers and P. de Mattos Pimenta), CISM International Centre for Mechanical Sciences, 519, Springer-Verlag, New-York, 2010, 59-97. doi: 10.1007/978-3-7091-0231-2_3.  Google Scholar

[5]

E. Artioli, S. Marfia, E. Sacco and R. L. Taylor, A nonlinear plate finite element formulation for shape memory alloy applications, Internat. J. Numer. Meth. Engrg., 89 (2012), 1249-1271. doi: 10.1002/nme.3285.  Google Scholar

[6]

F. Auricchio, A.-L. Bessoud, A. Reali and U. Stefanelli, Macroscopic modeling of magnetic shape memory alloys, Oberwolfach Reports, 14 (2010), 771-773. Google Scholar

[7]

F. Auricchio, A.-L. Bessoud, A. Reali and U. Stefanelli, A three-dimensional phenomenological models for magnetic shape memory alloys, GAMM-Mitt., 34 (2011), 90-96. doi: 10.1002/gamm.201110014.  Google Scholar

[8]

F. Auricchio, A.-L. Bessoud, A. Reali and U. Stefanelli, A phenomenological model for the magneto-mechanical response of single-crystal magnetic shape memory alloys, preprint IMATI-CNR, 3PV13/3/0, 2013. Google Scholar

[9]

F. Auricchio, E. Boatti, A. Reali and U. Stefanelli, The GENERIC formulation of coupled thermomechanical response in shape-memory alloys, in preparation, 2013. Google Scholar

[10]

F. Auricchio and E. Bonetti, A new "flexible'' 3D macroscopic model for shape memory alloys, Discrete Contin. Dyn. Syst. Ser. S, 6 (2013), 277-291.  Google Scholar

[11]

F. Auricchio and J. Lubliner, A uniaxial model for shape-memory alloys, Internat. J. Solids Structures, 34 (1997), 3601-3618. doi: 10.1016/S0020-7683(96)00232-6.  Google Scholar

[12]

F. Auricchio, A. Mielke and U. Stefanelli, A rate-independent model for the isothermal quasi-static evolution of shape-memory materials, Math. Models Meth. Appl. Sci., 18 (2008), 125-164. doi: 10.1142/S0218202508002632.  Google Scholar

[13]

F. Auricchio, L. Petrini, Improvements and algorithmical considerations on a recent three-dimensional model describing stress-induced solid phase transformations, Internat. J. Numer. Methods Engrg., 55 (2002), 1255-1284. doi: 10.1002/nme.619.  Google Scholar

[14]

F. Auricchio and L. Petrini, A three-dimensional model describing stress-temperature induced solid phase transformations. Part I: Solution algorithm and boundary value problems, Internat. J. Numer. Meth. Engrg., 61 (2004), 807-836. doi: 10.1002/nme.1086.  Google Scholar

[15]

F. Auricchio and L. Petrini, A three-dimensional model describing stress-temperature induced solid phase transformations. Part II: Thermomechanical coupling and hybrid composite applications, Internat. J. Numer. Meth. Engrg., 61 (2004), 716-737. doi: 10.1002/nme.1087.  Google Scholar

[16]

F. Auricchio, A. Reali and U. Stefanelli, A three-dimensional model describing stress-induces solid phase transformation with residual plasticity, Int. J. Plasticity, 23 (2007), 207-226. Google Scholar

[17]

F. Auricchio, A. Reali and U. Stefanelli, A phenomenological 3D model describing stress-induced solid phase transformations with permanent inelasticity, in Topics on Mathematics for Smart Systems (eds. B. Miara, G. Stavroulakis and V. Valente), World Sci. Publ., Hackensack, NJ, 2007, 1-14. doi: 10.1142/9789812706874_0001.  Google Scholar

[18]

F. Auricchio, A. Reali and U. Stefanelli, A macroscopic 1D model for shape memory alloys including asymmetric behaviors and transformation-dependent elastic properties, Comput. Methods Appl. Mech. Engrg., 198 (2009), 1631-1637. doi: 10.1016/j.cma.2009.01.019.  Google Scholar

[19]

F. Auricchio and U. Stefanelli, Well-posedness and approximation for a one-dimensional model for shape memory alloys, Math. Models Meth. Appl. Sci., 15 (2005), 1301-1327. doi: 10.1142/S0218202505000753.  Google Scholar

[20]

K. Bhattacharya, Microstructures of Martensites, Oxford Series on Materials Modeling, Oxford University Press, Oxford, 2003.  Google Scholar

[21]

V. Berti, M. Fabrizio and D. Grandi, Phase transitions in shape memory alloys: A non-isothermal Ginzburg-Landau model, Phys. D, 239 (2010), 95-102. doi: 10.1016/j.physd.2009.10.005.  Google Scholar

[22]

V. Berti, M. Fabrizio and D. Grandi, Hysteresis and phase transitions for one-dimensional and three-dimensional models in shape memory alloys, J. Math. Phys., 51 (2010), 062901, 13 pp. doi: 10.1063/1.3430573.  Google Scholar

[23]

A.-L. Bessoud and U. Stefanelli, Magnetic shape memory alloys: Three-dimensional modeling and analysis, Math. Models Meth. Appl. Sci., 21 (2011), 1043-1069. doi: 10.1142/S0218202511005246.  Google Scholar

[24]

A.-L. Bessoud, M. Kružík and U. Stefanelli, A macroscopic model for magnetic shape memory alloys, Z. Angew. Math. Phys., 64 (2013), 343-359. doi: 10.1007/s00033-012-0223-y.  Google Scholar

[25]

H. Brézis, Operateurs Maximaux Monotones et Semi-Groupes de Contractions dans les Espaces de Hilbert, Math. Studies, Vol.5, North-Holland, Amsterdam/New York, 1973.  Google Scholar

[26]

Z. Bo and D. Lagoudas, Thermomechanical modeling of polycrystalline SMAs under cyclic loading. Part III: Evolution of plastic strains and two- way shape memory effect, Int. J. Engrg. Sci., 37 (1999), 1175-1203. doi: 10.1016/S0020-7225(98)00115-3.  Google Scholar

[27]

E. Bonetti, Global solvability of a dissipative Frémond model for shape memory alloys. I. Mathematical formulation and uniqueness, Quart. Appl. Math., 61 (2003), 759-781.  Google Scholar

[28]

M. Brokate and J. Sprekels, Hysteresis and Phase Transitions, Applied Mathematical Sciences, 121, Springer-Verlag, New York, 1996. doi: 10.1007/978-1-4612-4048-8.  Google Scholar

[29]

W. F. Brown, Jr., Magnetoelastic Interactions, Springer, Berlin, 1966. doi: 10.1007/978-3-642-87396-6.  Google Scholar

[30]

N. Bubner, J. Sokołowski and J. Sprekels, Optimal boundary control problems for shape memory alloys under state constraints for stress and temperature, Numer. Funct. Anal. Optim., 19 (1998), 489-498. doi: 10.1080/01630569808816840.  Google Scholar

[31]

P. Colli, Global existence for the three-dimensional Frémond model of shape memory alloys, Nonlinear Anal., 24 (1995), 1565-1579. doi: 10.1016/0362-546X(94)00097-2.  Google Scholar

[32]

P. Colli, M. Frémond and A. Visintin, Thermo-mechanical evolution of shape memory alloys, Quart. Appl. Math., 48 (1990), 31-47.  Google Scholar

[33]

S. Conti, M. Lenz and M. Rumpf, Macroscopic behaviour of magnetic shape-memory polycrystals and polymer composites, Mater. Sci. Engrg. A, 481-482 (2008), 351-355. doi: 10.1016/j.msea.2007.04.126.  Google Scholar

[34]

B. D. Cullity and C. D. Graham, Introduction to Magnetic Materials, Second ed., Wiley., 2008. doi: 10.1002/9780470386323.  Google Scholar

[35]

F. Daghia, M. Fabrizio and D. Grandi, A non isothermal Ginzburg-Landau model for phase transitions in shape memory alloys, Meccanica, 45 (2010), 797-807. doi: 10.1007/s11012-010-9286-z.  Google Scholar

[36]

R. Delville, B. Malard, J. Pilch, P. Šittner and D. Schryvers, Microstructure changes during non-conventional heat treatment of thin Ni-Ti wires by pulsed electric current studied by transmission electron microscopy, Acta Mater., 58 (2010), 4503-4515. doi: 10.1016/j.actamat.2010.04.046.  Google Scholar

[37]

R. Delville, B. Malard, J. Pilch, P. Šittner and D. Schryvers, Transmission electron microscopy study of microstructural evolution in nanograined Ni-Ti microwires heat treated by electric pulse, Solid State Phenom., 172-174 (2011), 682-687. doi: 10.4028/www.scientific.net/SSP.172-174.682.  Google Scholar

[38]

A. DeSimone and R. D. James, A constrained theory of magnetoelasticity, J. Mech. Phys. Solids, 50 (2002), 283-320. doi: 10.1016/S0022-5096(01)00050-3.  Google Scholar

[39]

T. W. Duerig and A. R. Pelton, eds., SMST-2003 Proceedings of the International Conference on Shape Memory and Superelastic Technology Conference, ASM International, 2003. Google Scholar

[40]

J. Dutkiewicz, Plastic deformation of CuAlMn shape-memory alloys, J. Mat. Sci., 29 (1994), 6249-6254. doi: 10.1007/BF00354567.  Google Scholar

[41]

M. Eleuteri, L. Lussardi and U. Stefanelli, A rate-independent model for permanent inelastic effects in shape memory materials, Netw. Heterog. Media, 6 (2011), 145-165. doi: 10.3934/nhm.2011.6.145.  Google Scholar

[42]

M. Eleuteri and L. Lussardi, Thermal control of a rate-independent model for permanent inelastic effects in shape memory materials, Evol. Equ. Control Theory, 3 (2014), 411-427. doi: 10.3934/eect.2014.3.411.  Google Scholar

[43]

M. Eleuteri, L. Lussardi and U. Stefanelli, Thermal control of the Souza-Auricchio model for shape memory alloys, Discrete Cont. Dyn. Syst.-S, 6 (2013), 369-386.  Google Scholar

[44]

V. Evangelista, S. Marfia and E. Sacco, Phenomenological 3D and 1D consistent models for shape-memory alloy materials, Comput. Mech., {44} (2009), 405-421. doi: 10.1007/s00466-009-0381-8.  Google Scholar

[45]

V. Evangelista, S. Marfia and E. Sacco, A 3D SMA constitutive model in the framework of finite strain, Internat. J. Numer. Methods Engrg., 81 (2010), 761-785. doi: 10.1002/nme.2717.  Google Scholar

[46]

F. Falk, Model free energy, mechanics and thermodynamics of shape memory alloys, Acta Metal., 28 (1980), 1773-1780. doi: 10.1016/0001-6160(80)90030-9.  Google Scholar

[47]

F. Falk and P. Konopka, Three-dimensional Landau theory describing the martensitic phase transformation of shape-memory alloys, Continuum Models of Discrete Systems, 123-125 (1990), 113-122. doi: 10.4028/www.scientific.net/MSF.123-125.113.  Google Scholar

[48]

G. Francfort and A. Mielke, Existence results for a class of rate-independent material models with nonconvex elastic energies, J. Reine Angew. Math., 595 (2006), 55-91. doi: 10.1515/CRELLE.2006.044.  Google Scholar

[49]

M. Frémond, Matériaux à mémoire de forme, C. R. Acad. Sci. Paris Sér. II Méc. Phys. Chim. Sci. Univers Sci. Terre, 304 (1987), 239-244. Google Scholar

[50]

M. Frémond, Non-Smooth Thermomechanics, Springer-Verlag, Berlin, 2002. doi: 10.1007/978-3-662-04800-9.  Google Scholar

[51]

M. Frémond and S. Miyazaki, Shape Memory Alloys, CISM Courses and Lectures, Vol. 351, Springer-Verlag, 1996. Google Scholar

[52]

M. Frémond and E. Rocca, A model for shape memory alloys with the possibility of voids, Discrete Contin. Dyn. Syst., 27 (2010), 1633-1659. doi: 10.3934/dcds.2010.27.1633.  Google Scholar

[53]

S. Frigeri, P. Krejčí and U. Stefanelli, Quasistatic isothermal evolution of shape memory alloys, Math. Models Meth. Appl. Sci., 21 (2011), 2409-2432. doi: 10.1142/S0218202511005787.  Google Scholar

[54]

S. Frigeri and U. Stefanelli, Existence and time-discretization for the finite-strain Souza-Auricchio constitutive model for shape-memory alloys, Contin. Mech. Thermodyn., 24 (2012), 63-77. doi: 10.1007/s00161-011-0221-x.  Google Scholar

[55]

J.-Y. Gauthier, C. Lexcellent, A. Hubert, J. Abadie and N. Chaillet, Magneto-thermo-mechanical modeling of a magnetic shape memory alloy Ni-Mn-Ga single crystal, Ann. Solid Struct. Mech., 2 (2001), 19-31. doi: 10.1007/s12356-011-0014-8.  Google Scholar

[56]

S. Govindjee and C. Miehe, A multi-variant martensitic phase transformation model: Formulation and numerical implementation, Comput. Methods Appl. Mech. Engrg., 191 (2001), 215-238. doi: 10.1016/S0045-7825(01)00271-7.  Google Scholar

[57]

S. Govindjee and E. P. Kasper, A shape memory alloy model for uranium- niobium accounting for plasticity, J. Intelligent Mat. Syst. Struct., 8 (1997), 815-823. doi: 10.1177/1045389X9700801001.  Google Scholar

[58]

D. Grandi and U. Stefanelli, Modeling microstructure-dependent inelasticity in shape-memory alloys, preprint, IMATI-CNR 13PV13/11/0, 2013. Google Scholar

[59]

D. Helm and P. Haupt, Shape memory behaviour: Modelling within continuum thermomechanics, Intern. J. Solids Struct., 40 (2003), 827-849. doi: 10.1016/S0020-7683(02)00621-2.  Google Scholar

[60]

L. Hirsinger and C. Lexcellent, Internal variable model for magneto-mechanical behaviour of ferromagnetic shape memory alloys Ni-Mn-Ga, J. Phys. IV, 112 (2003), 977-980. doi: 10.1051/jp4:20031044.  Google Scholar

[61]

K.-H. Hoffmann, M. Niezgódka and Z. Songmu, Existence and uniqueness of global solutions to an extended model of the dynamical developments in shape memory alloys, Nonlinear Anal., 15 (1990), 977-990. doi: 10.1016/0362-546X(90)90079-V.  Google Scholar

[62]

K.-H. Hoffmann and D. Tiba, Control of a plate with nonlinear shape memory alloy reinforcements, Adv. Math. Sci. Appl., 7 (1997), 427-436.  Google Scholar

[63]

K.-H. Hoffmann and A. Żochowski, Control of the thermoelastic model of a plate activated by shape memory alloy reinforcements, Math. Methods Appl. Sci., 21 (1998), 589-603.  Google Scholar

[64]

R. D. James and M. Wuttig, Magnetostriction of martensite, Phil. Mag. A, 77 (1998), 1273-1299. doi: 10.1080/01418619808214252.  Google Scholar

[65]

H. E. Karaca, I. Karaman, B. Basaran, Y. I. Chumlyakov and H. J. Maier, Magnetic field and stress induced martensite reorientation in NiMnGa ferromagnetic shape memory alloy single crystals, Acta Mat., 54 (2006), 233-245. doi: 10.1016/j.actamat.2005.09.004.  Google Scholar

[66]

J. Kiang and L. Tong, Modelling of magneto-mechanical behaviour of Ni-Mn-Ga single crystals, J. Magn. Magn. Mater., 292 (2005), 394-412. doi: 10.1016/j.jmmm.2004.11.481.  Google Scholar

[67]

B. Kiefer, A Phenomelogical Model for Magnetic Shape Memory Alloys, Ph.D Thesis, Texas A&M, 2006. Google Scholar

[68]

B. Kiefer and D. C. Lagoudas, Modeling the coupled strain and magnetization response of magnetic shape memory alloys under magnetomechanical loading, J. Intell. Mater. Syst. Struct., 20 (2009), 143-170. doi: 10.1177/1045389X07086688.  Google Scholar

[69]

B. Kiefer, H. Karaca, D. C. Lagoudas and I. Karaman, Characterization and modeling of the magnetic field-induced strain and work output in Ni$_2$MnGa magnetic shape memory alloys, J. Magn. Magn. Mater., 312 (2007), 164-175. Google Scholar

[70]

P. Krejčí and U. Stefanelli, Existence and nonexistence for the full thermomechanical Souza-Auricchio model of shape memory wires, Math. Mech. Solids, 16 (2011), 349-365. doi: 10.1177/1081286510386935.  Google Scholar

[71]

P. Krejčí and U. Stefanelli, Well-posedness of a thermo-mechanical model for shape memory alloys under tension, M2AN Math. Model. Numer. Anal., 44 (2010), 1239-1253. doi: 10.1051/m2an/2010024.  Google Scholar

[72]

M. Kružík and J. Zimmer, A model of shape memory alloys taking into account plasticity, IMA J. Appl. Math., 76 (2011), 193-216. doi: 10.1093/imamat/hxq058.  Google Scholar

[73]

D. C. Lagoudas and P. Entchev, Modeling of transformation-induced plas- ticity and its effect on the behavior of porous shape memory alloys. Part I: Constitutive model for fully dense SMAs, Mech. Mat., 36 (2004), 865-892. Google Scholar

[74]

D. C. Lagoudas, P. B. Entchev, P. Popov, E. Patoor, L. C. Brinson and X. Gao, Shape memory alloys, Part II: Modeling of polycrystals, Mech. Materials, 38 (2006), 430-462. doi: 10.1016/j.mechmat.2005.08.003.  Google Scholar

[75]

E. Lee, Elastic-plastic deformation at finite strains, J. Appl. Mech, 36 (1969), 1-6. doi: 10.1115/1.3564580.  Google Scholar

[76]

V. I. Levitas, Thermomechanical theory of martensitic phase transformations in inelastic materials, Intern. J. Solids Struct., 35 (1998), 889-940. doi: 10.1016/S0020-7683(97)00089-9.  Google Scholar

[77]

Ch. Lexcellent, Shape-Memory Alloys Handbook, Wiley, 2013. doi: 10.1002/9781118577776.  Google Scholar

[78]

A. A. Likhachev and K. Ullakko, Magnetic-field-controlled twin boundaries motion and giant magneto-mechanical effects in Ni-Mn-Ga shape memory alloy, Phys. Lett. A, 275 (2000), 142-151. doi: 10.1016/S0375-9601(00)00561-2.  Google Scholar

[79]

B. Malard, J. Pilch, P. Šittner, R. Delville and C. Curfs, In situ investigation of the fast microstructure evolution during electropulse treatment of cold drawn NiTi wires, Acta Mater., 59 (2011), 1542-1556. doi: 10.1016/j.actamat.2010.11.018.  Google Scholar

[80]

A. Mainik and A. Mielke, Existence results for energetic models for rate-independent systems, Calc. Var. Partial Differential Equations, 22 (2005), 73-99. doi: 10.1007/s00526-004-0267-8.  Google Scholar

[81]

M. Maraldi, L. Molari and D. Grandi, A non-isothermal phase-field model for shape memory alloys: Numerical simulations of superelasticity and shape memory effect under stress- controlled conditions, J. Intelligent Mat. Syst. Struct., 23 (2012), 1083-1092. doi: 10.1177/1045389X12442012.  Google Scholar

[82]

M. Maraldi, L. Molari and D. Grandi, A macroscale, phase-field model for shape memory alloys with non-isothermal effects: Influence of strain-rate and environmental conditions on the mechanical response, Acta Mat., 60 (2012), 179-191. Google Scholar

[83]

C. Miehe, B. Kiefer and D. Rosato, An incremental variational formulation of dissipative magnetostriction at the macroscopic continuum level, Internat. J. Solids Struct., 48 (2011), 1846-1866. doi: 10.1016/j.ijsolstr.2011.02.011.  Google Scholar

[84]

A. Mielke, Evolution of rate-independent systems, in Handbook of Differential Equations, Evolutionary Equations (eds. C. Dafermos and E. Feireisl), Elsevier, II, 2005, 461-559.  Google Scholar

[85]

A. Mielke, Formulation of thermoelastic dissipative material behavior using GENERIC, Contin. Mech. Thermodyn., 23 (2011), 233-256. doi: 10.1007/s00161-010-0179-0.  Google Scholar

[86]

A. Mielke, On thermodynamically consistent models and gradient structures for thermoplasticity, GAMM Mitt., 34 (2011), 51-58. doi: 10.1002/gamm.201110008.  Google Scholar

[87]

A. Mielke, L. Paoli and A. Petrov, On existence and approximation for a 3D model of thermally induced phase transformations in shape-memory alloys, SIAM J. Math. Anal., 41 (2009), 1388-1414. doi: 10.1137/080726215.  Google Scholar

[88]

A. Mielke, L. Paoli, A. Petrov, U. Stefanelli, Error estimates for space-time discretizations of a rate-independent variational inequality, SIAM J. Numer. Anal., 48 (2010), 1625-1646. doi: 10.1137/090750238.  Google Scholar

[89]

A. Mielke, L. Paoli, A. Petrov and U. Stefanelli, Error bounds for space-time discretizations of a 3d model for shape-memory materials, in IUTAM Symposium on Variational Concepts with Applications to the Mechanics of Materials (ed. K. Hackl), IUTAM Bookseries, 21, Springer, 2010, 185-197. doi: 10.1007/978-90-481-9195-6_14.  Google Scholar

[90]

A. Mielke and A. Petrov, Thermally driven phase transformation in shape-memory alloys, Adv. Math. Sci. Appl., 17 (2007), 667-685.  Google Scholar

[91]

A. Mielke and F. Rindler, Reverse approximation of energetic solutions to rate-independent processes, NoDEA Nonlinear Differential Equations Appl., 16 (2009), 17-40. doi: 10.1007/s00030-008-7065-5.  Google Scholar

[92]

A. Mielke, T. Roubíček and U. Stefanelli, $\Gamma$-limits and relaxations for rate-independent evolutionary problems, Calc. Var. Partial Differential Equations, 31 (2008), 387-416. doi: 10.1007/s00526-007-0119-4.  Google Scholar

[93]

A. Mielke and U. Stefanelli, Linearized plasticity is the evolutionary $\Gamma$-limit of finite plasticity, J. Eur. Math. Soc. (JEMS), 15 (2013), 923-948. doi: 10.4171/JEMS/381.  Google Scholar

[94]

A. Mielke and F. Theil, On rate-independent hysteresis models, NoDEA Nonlinear Diff. Equations Applications, 11 (2004), 151-189. doi: 10.1007/s00030-003-1052-7.  Google Scholar

[95]

S. J. Murray, M. Marioni, P. G. Tello, S. M. Allen and R. C. O'Handley, Giant magnetic-field-induced strain in Ni-Mn-Ga crystals: Experimental results and modeling, J. Magn. Magn. Mater., 226-230 (2001), 945-947. doi: 10.1016/S0304-8853(00)00611-9.  Google Scholar

[96]

S. J. Murray, S. M. Allen, R. C. O'Handley and T. A. Lograsso, Magnetomechanical performance and mechanical properties of Ni-Mn-Ga ferromagnetic shape memory alloys, in SPIE Proceedings 3992, Smart Structures and Materials 2000: Active Materials: Behavior and Mechanics, 2000, 387. doi: 10.1117/12.388253.  Google Scholar

[97]

S. J. Murray, R. C. O'Handley and S. M. Allen, Model for discontinuous actuation of ferromagnetic shape memory alloy under stress, J. Appl. Phys., 89 (2000), 1295-1301. doi: 10.1063/1.1285867.  Google Scholar

[98]

R. C. O'Handley, Model for strain and magnetization in magnetic shape-memory alloys, J. Appl. Phys., 83 (1998), 3263-3270. Google Scholar

[99]

R. C. O'Handley, S. J. Murray, M. Marioni, H. Nembach and S. M. Allen, Phenomenology of giant magnetic-field-induced strain in ferromagnetic shape-memory materials,, J. Appl. Phys., 87 (): 4712.   Google Scholar

[100]

A. Paiva, M. A. Savi, A. M. B. Braga and P. M. C. L. Pacheco, A constitutive model for shape memory alloys considering tensile-compressive asymmetry and plasticity, Int. J. Solids Struct., 42 (2005), 3439-3457. doi: 10.1016/j.ijsolstr.2004.11.006.  Google Scholar

[101]

I. Pawłow and W. M. Zajaczkowski, Global existence to a three-dimensional non-linear thermoelasticity system arising in shape memory materials, Math. Methods Appl. Sci., 28 (2005), 407-442. doi: 10.1002/mma.574.  Google Scholar

[102]

L. Paoli and A. Petrov, Global existence result for phase transformations with heat transfer in shape memory alloys, preprint, arXiv:1104.5408, 2011. Google Scholar

[103]

L. Paoli and A. Petrov, Existence result for a class of generalized standard materials with thermomechanical coupling, preprint, arXiv:1111.2436, 2011. Google Scholar

[104]

L. Paoli and A. Petrov, Thermodynamics of multiphase problems in viscoelasticity, GAMM-Mitt., 35 (2012), 75-90. doi: 10.1002/gamm.201210006.  Google Scholar

[105]

L. Paoli and A. Petrov, Global existence result for thermoviscoelastic problems with hysteresis, Nonlinear Anal. Real World Appl., 13 (2012), 524-542. doi: 10.1016/j.nonrwa.2011.07.018.  Google Scholar

[106]

L. Paoli and A. Petrov, Solvability for a class of generalized standard materials with thermomechanical coupling, Nonlinear Anal. Real World Appl., 14 (2013), 111-130. doi: 10.1016/j.nonrwa.2012.05.006.  Google Scholar

[107]

I. Pawłow and A. Żochowski, A Control Problem for a Thermoelastic System in Shape Memory Materials. Free Boundary Problems, (Japanese), Sūrikaisekikenkyūsho Kōkyūroku, No. 1210, (2001), 8-23.  Google Scholar

[108]

B. Peultier, T. Ben Zineb and E. Patoor, Macroscopic constitutive law for SMA: Application to structure analysis by FEM, Materials Sci. Engrg. A, 438-440 (2006), 454-458. doi: 10.1016/j.msea.2006.01.104.  Google Scholar

[109]

P. Popov and D. C. Lagoudas, A 3-D constitutive model for shape memory alloys incorporating pseudoelasticity and detwinning of self-accommodated martensite, Int. J. Plasticity, 23 (2007), 1679-1720. doi: 10.1016/j.ijplas.2007.03.011.  Google Scholar

[110]

B. Raniecki and Ch. Lexcellent, $R_L$ models of pseudoelasticity and their specification for some shape-memory solids, Eur. J. Mech. A Solids, 13 (1994), 21-50.  Google Scholar

[111]

S. Reese and D. Christ, Finite deformation pseudo-elasticity of shape memory alloys - Constitutive modelling and finite element implementation, Int. J. Plasticity, 24 (2008), 455-482. doi: 10.1016/j.ijplas.2007.05.005.  Google Scholar

[112]

F. Rindler, Optimal control for nonconvex rate-independent evolution processes, SIAM J. Control Optim., 47 (2008), 2773-2794. doi: 10.1137/080718711.  Google Scholar

[113]

F. Rindler, Approximation of rate-independent optimal control problems, SIAM J. Numer. Anal., 47 (2009), 3884-3909. doi: 10.1137/080744050.  Google Scholar

[114]

T.Roubíček, Models of microstructure evolution in shape memory alloys, in Nonlinear Homogenization and its Appl.to Composites, Polycrystals and Smart Materials, (eds. P. Ponte Castaneda, J. J. Telega, B. Gambin), NATO Sci. Series II, 170, Kluwer, Dordrecht, 2004, 269-304. doi: 10.1007/1-4020-2623-4_12.  Google Scholar

[115]

T. Roubíček, Rate-independent processes in viscous solids at small strains, Math. Methods Appl. Sci., 32 (2009), 825-862. doi: 10.1002/mma.1069.  Google Scholar

[116]

T. Roubíček, Thermodynamics of rate-independent processes in viscous solids at small strains, SIAM J. Math. Anal., 42 (2010), 256-297. doi: 10.1137/080729992.  Google Scholar

[117]

T. Roubíček, Approximation in multiscale modelling of microstructure evolution in shape-memory alloys, Cont. Mech. Thermodynam., 23 (2011), 491-507. doi: 10.1007/s00161-011-0190-0.  Google Scholar

[118]

T. Roubíček, Nonlinearly coupled thermo-visco-elasticity, NoDEA Nonlinear Differential Equations Appl., 20 (2013), 1243-1275. doi: 10.1007/s00030-012-0207-9.  Google Scholar

[119]

T. Roubíček and U. Stefanelli, Magnetic shape-memory alloys: Thermomechanical modeling and analysis, preprint, IMATI-CNR 6PV13/0/0, 2013. Google Scholar

[120]

T. Roubíček and G. Tomassetti, Thermodynamics of shape-memory alloys under electric current, Z. Angew. Math. Phys., 61 (2010), 1-20. doi: 10.1007/s00033-009-0007-1.  Google Scholar

[121]

T. Roubíček and G. Tomassetti, Phase transformations in electrically conductive ferromagnetic shape-memory alloys, their thermodynamics and analysis, Arch. Ration. Mech. Anal., 210 (2013), 1-43. doi: 10.1007/s00205-013-0648-2.  Google Scholar

[122]

P. Šittner, Y. Hara and M. Tokuda, Experimental study on the thermoelastic martensitic transformation in shape memory alloy polycrystal induced by combined external forces, Metall. Materials Trans., 26 (1995), 2923-2935. doi: 10.1007/BF02669649.  Google Scholar

[123]

J. Sokołowski and J. Sprekels, Control problems with state constraints for shape memory alloys, Math. Methods Appl. Sci., 17 (1994), 943-952. doi: 10.1002/mma.1670171204.  Google Scholar

[124]

A. C. Souza, E. N. Mamiya and N. Zouain, Three-dimensional model for solids undergoing stress-induced tranformations, Eur. J. Mech. A Solids, 17 (1998), 789-806. doi: 10.1016/S0997-7538(98)80005-3.  Google Scholar

[125]

A. Sozinov, A. A. Likhachev, N. Lanska and K. Ullakko, Giant magnetic-field-induced strain in NiMnGa seven-layered martensitic phase, Appl. Phys. Lett., 80 (2002), 1746-1748. doi: 10.1063/1.1458075.  Google Scholar

[126]

U. Stefanelli, Analysis of a thermomechanical model for shape memory alloys, SIAM J. Math. Anal., 37 (2005), 130-155. doi: 10.1137/S0036141004444251.  Google Scholar

[127]

U. Stefanelli, Magnetic control of magnetic shape-memory single crystals, Phys. B, 407 (2012), 1316-1321. doi: 10.1016/j.physb.2011.06.043.  Google Scholar

[128]

P. Thamburaja and L. Anand, Polycrystalline shape-memory materials: Effect of crystallographic texture, J. Mech. Phys. Solids, 49 (2001), 709-737. doi: 10.1016/S0022-5096(00)00061-2.  Google Scholar

[129]

R. Tickle and R. D. James, Magnetic and magnetomechanical properties of $Ni_2MnGa$, J. Magn. Magn. Mater., 195 (1999), 627-638. Google Scholar

[130]

R. A. Vandermeer, J. C. Ogle and W. G. Jr. Northcutt, A phenomenological study of the shape memory effect in polycrystalline Uranium-Niobium alloys, Metal. Trans A, 12A (1981), 733-741. Google Scholar

[131]

A. Visintin, Differential Models of Hysteresis, Applied Mathematical Sciences, 111, Springer, Berlin, 1994. doi: 10.1007/978-3-662-11557-2.  Google Scholar

[132]

G. Wachsmuth, Optimal control of quasistatic plasticity with linear kinematic hardening, Part I: Existence and discretization in time, SIAM J. Control Optim., 50 (2012), 2836-2861. doi: 10.1137/110839187.  Google Scholar

[133]

G. Wachsmuth, Optimal control of quasistatic plasticity with linear kinematic hardening, part II: Regularization and differentiability, preprint, SPP1253-119, 2011. Google Scholar

[134]

G. Wachsmuth, Optimal control of quasistatic plasticity with linear kinematic hardening, part III: Optimality conditions, preprint, SPP1253-119, 2011. Google Scholar

[135]

J. Wang and P. Steinmann, A variational approach towards the modelling of magnetic field-induced strains in magnetic shape memory alloys, J. Mech. Phys. Solids, 60 (2012), 1179-1200. doi: 10.1016/j.jmps.2012.02.003.  Google Scholar

[136]

S. Yoshikawa, I. Pawłow and W. M. Zajaczkowski, Quasi-linear thermoelasticity system arising in shape memory materials, SIAM J. Math. Anal., 38 (2007), 1733-1759. doi: 10.1137/060653159.  Google Scholar

[137]

J. Zimmer, Global existence for a nonlinear system in thermoviscoelasticity with nonconvex energy, J. Math. Anal. Appl., 292 (2004), 589-604. doi: 10.1016/j.jmaa.2003.12.010.  Google Scholar

show all references

References:
[1]

T. Aiki, A model of 3D shape memory alloy materials, J. Math. Soc. Japan, 57 (2005), 903-933. doi: 10.2969/jmsj/1158241940.  Google Scholar

[2]

M. Arndt, M. Griebel and T. Roubíček, Modelling and numerical simulation of martensitic transformation in shape memory alloys, Contin. Mech. Thermodyn., 15 (2003), 463-485. doi: 10.1007/s00161-003-0127-3.  Google Scholar

[3]

M. Arrigoni, F. Auricchio, V. Cacciafesta, L. Petrini and R. Pietrabissa, Cyclic effects in shape-memory alloys: A one-dimensional continuum model, J. Phys. IV France, 11 (2001), 577-582. Google Scholar

[4]

E. Artioli, F. Auricchio and R. L. Taylor, A beam finite element for nonlinear analysis of shape memory alloy devices, in New Trends in Thin Structures: Formulation, Optimization and Coupled Problems (eds. P. Wriggers and P. de Mattos Pimenta), CISM International Centre for Mechanical Sciences, 519, Springer-Verlag, New-York, 2010, 59-97. doi: 10.1007/978-3-7091-0231-2_3.  Google Scholar

[5]

E. Artioli, S. Marfia, E. Sacco and R. L. Taylor, A nonlinear plate finite element formulation for shape memory alloy applications, Internat. J. Numer. Meth. Engrg., 89 (2012), 1249-1271. doi: 10.1002/nme.3285.  Google Scholar

[6]

F. Auricchio, A.-L. Bessoud, A. Reali and U. Stefanelli, Macroscopic modeling of magnetic shape memory alloys, Oberwolfach Reports, 14 (2010), 771-773. Google Scholar

[7]

F. Auricchio, A.-L. Bessoud, A. Reali and U. Stefanelli, A three-dimensional phenomenological models for magnetic shape memory alloys, GAMM-Mitt., 34 (2011), 90-96. doi: 10.1002/gamm.201110014.  Google Scholar

[8]

F. Auricchio, A.-L. Bessoud, A. Reali and U. Stefanelli, A phenomenological model for the magneto-mechanical response of single-crystal magnetic shape memory alloys, preprint IMATI-CNR, 3PV13/3/0, 2013. Google Scholar

[9]

F. Auricchio, E. Boatti, A. Reali and U. Stefanelli, The GENERIC formulation of coupled thermomechanical response in shape-memory alloys, in preparation, 2013. Google Scholar

[10]

F. Auricchio and E. Bonetti, A new "flexible'' 3D macroscopic model for shape memory alloys, Discrete Contin. Dyn. Syst. Ser. S, 6 (2013), 277-291.  Google Scholar

[11]

F. Auricchio and J. Lubliner, A uniaxial model for shape-memory alloys, Internat. J. Solids Structures, 34 (1997), 3601-3618. doi: 10.1016/S0020-7683(96)00232-6.  Google Scholar

[12]

F. Auricchio, A. Mielke and U. Stefanelli, A rate-independent model for the isothermal quasi-static evolution of shape-memory materials, Math. Models Meth. Appl. Sci., 18 (2008), 125-164. doi: 10.1142/S0218202508002632.  Google Scholar

[13]

F. Auricchio, L. Petrini, Improvements and algorithmical considerations on a recent three-dimensional model describing stress-induced solid phase transformations, Internat. J. Numer. Methods Engrg., 55 (2002), 1255-1284. doi: 10.1002/nme.619.  Google Scholar

[14]

F. Auricchio and L. Petrini, A three-dimensional model describing stress-temperature induced solid phase transformations. Part I: Solution algorithm and boundary value problems, Internat. J. Numer. Meth. Engrg., 61 (2004), 807-836. doi: 10.1002/nme.1086.  Google Scholar

[15]

F. Auricchio and L. Petrini, A three-dimensional model describing stress-temperature induced solid phase transformations. Part II: Thermomechanical coupling and hybrid composite applications, Internat. J. Numer. Meth. Engrg., 61 (2004), 716-737. doi: 10.1002/nme.1087.  Google Scholar

[16]

F. Auricchio, A. Reali and U. Stefanelli, A three-dimensional model describing stress-induces solid phase transformation with residual plasticity, Int. J. Plasticity, 23 (2007), 207-226. Google Scholar

[17]

F. Auricchio, A. Reali and U. Stefanelli, A phenomenological 3D model describing stress-induced solid phase transformations with permanent inelasticity, in Topics on Mathematics for Smart Systems (eds. B. Miara, G. Stavroulakis and V. Valente), World Sci. Publ., Hackensack, NJ, 2007, 1-14. doi: 10.1142/9789812706874_0001.  Google Scholar

[18]

F. Auricchio, A. Reali and U. Stefanelli, A macroscopic 1D model for shape memory alloys including asymmetric behaviors and transformation-dependent elastic properties, Comput. Methods Appl. Mech. Engrg., 198 (2009), 1631-1637. doi: 10.1016/j.cma.2009.01.019.  Google Scholar

[19]

F. Auricchio and U. Stefanelli, Well-posedness and approximation for a one-dimensional model for shape memory alloys, Math. Models Meth. Appl. Sci., 15 (2005), 1301-1327. doi: 10.1142/S0218202505000753.  Google Scholar

[20]

K. Bhattacharya, Microstructures of Martensites, Oxford Series on Materials Modeling, Oxford University Press, Oxford, 2003.  Google Scholar

[21]

V. Berti, M. Fabrizio and D. Grandi, Phase transitions in shape memory alloys: A non-isothermal Ginzburg-Landau model, Phys. D, 239 (2010), 95-102. doi: 10.1016/j.physd.2009.10.005.  Google Scholar

[22]

V. Berti, M. Fabrizio and D. Grandi, Hysteresis and phase transitions for one-dimensional and three-dimensional models in shape memory alloys, J. Math. Phys., 51 (2010), 062901, 13 pp. doi: 10.1063/1.3430573.  Google Scholar

[23]

A.-L. Bessoud and U. Stefanelli, Magnetic shape memory alloys: Three-dimensional modeling and analysis, Math. Models Meth. Appl. Sci., 21 (2011), 1043-1069. doi: 10.1142/S0218202511005246.  Google Scholar

[24]

A.-L. Bessoud, M. Kružík and U. Stefanelli, A macroscopic model for magnetic shape memory alloys, Z. Angew. Math. Phys., 64 (2013), 343-359. doi: 10.1007/s00033-012-0223-y.  Google Scholar

[25]

H. Brézis, Operateurs Maximaux Monotones et Semi-Groupes de Contractions dans les Espaces de Hilbert, Math. Studies, Vol.5, North-Holland, Amsterdam/New York, 1973.  Google Scholar

[26]

Z. Bo and D. Lagoudas, Thermomechanical modeling of polycrystalline SMAs under cyclic loading. Part III: Evolution of plastic strains and two- way shape memory effect, Int. J. Engrg. Sci., 37 (1999), 1175-1203. doi: 10.1016/S0020-7225(98)00115-3.  Google Scholar

[27]

E. Bonetti, Global solvability of a dissipative Frémond model for shape memory alloys. I. Mathematical formulation and uniqueness, Quart. Appl. Math., 61 (2003), 759-781.  Google Scholar

[28]

M. Brokate and J. Sprekels, Hysteresis and Phase Transitions, Applied Mathematical Sciences, 121, Springer-Verlag, New York, 1996. doi: 10.1007/978-1-4612-4048-8.  Google Scholar

[29]

W. F. Brown, Jr., Magnetoelastic Interactions, Springer, Berlin, 1966. doi: 10.1007/978-3-642-87396-6.  Google Scholar

[30]

N. Bubner, J. Sokołowski and J. Sprekels, Optimal boundary control problems for shape memory alloys under state constraints for stress and temperature, Numer. Funct. Anal. Optim., 19 (1998), 489-498. doi: 10.1080/01630569808816840.  Google Scholar

[31]

P. Colli, Global existence for the three-dimensional Frémond model of shape memory alloys, Nonlinear Anal., 24 (1995), 1565-1579. doi: 10.1016/0362-546X(94)00097-2.  Google Scholar

[32]

P. Colli, M. Frémond and A. Visintin, Thermo-mechanical evolution of shape memory alloys, Quart. Appl. Math., 48 (1990), 31-47.  Google Scholar

[33]

S. Conti, M. Lenz and M. Rumpf, Macroscopic behaviour of magnetic shape-memory polycrystals and polymer composites, Mater. Sci. Engrg. A, 481-482 (2008), 351-355. doi: 10.1016/j.msea.2007.04.126.  Google Scholar

[34]

B. D. Cullity and C. D. Graham, Introduction to Magnetic Materials, Second ed., Wiley., 2008. doi: 10.1002/9780470386323.  Google Scholar

[35]

F. Daghia, M. Fabrizio and D. Grandi, A non isothermal Ginzburg-Landau model for phase transitions in shape memory alloys, Meccanica, 45 (2010), 797-807. doi: 10.1007/s11012-010-9286-z.  Google Scholar

[36]

R. Delville, B. Malard, J. Pilch, P. Šittner and D. Schryvers, Microstructure changes during non-conventional heat treatment of thin Ni-Ti wires by pulsed electric current studied by transmission electron microscopy, Acta Mater., 58 (2010), 4503-4515. doi: 10.1016/j.actamat.2010.04.046.  Google Scholar

[37]

R. Delville, B. Malard, J. Pilch, P. Šittner and D. Schryvers, Transmission electron microscopy study of microstructural evolution in nanograined Ni-Ti microwires heat treated by electric pulse, Solid State Phenom., 172-174 (2011), 682-687. doi: 10.4028/www.scientific.net/SSP.172-174.682.  Google Scholar

[38]

A. DeSimone and R. D. James, A constrained theory of magnetoelasticity, J. Mech. Phys. Solids, 50 (2002), 283-320. doi: 10.1016/S0022-5096(01)00050-3.  Google Scholar

[39]

T. W. Duerig and A. R. Pelton, eds., SMST-2003 Proceedings of the International Conference on Shape Memory and Superelastic Technology Conference, ASM International, 2003. Google Scholar

[40]

J. Dutkiewicz, Plastic deformation of CuAlMn shape-memory alloys, J. Mat. Sci., 29 (1994), 6249-6254. doi: 10.1007/BF00354567.  Google Scholar

[41]

M. Eleuteri, L. Lussardi and U. Stefanelli, A rate-independent model for permanent inelastic effects in shape memory materials, Netw. Heterog. Media, 6 (2011), 145-165. doi: 10.3934/nhm.2011.6.145.  Google Scholar

[42]

M. Eleuteri and L. Lussardi, Thermal control of a rate-independent model for permanent inelastic effects in shape memory materials, Evol. Equ. Control Theory, 3 (2014), 411-427. doi: 10.3934/eect.2014.3.411.  Google Scholar

[43]

M. Eleuteri, L. Lussardi and U. Stefanelli, Thermal control of the Souza-Auricchio model for shape memory alloys, Discrete Cont. Dyn. Syst.-S, 6 (2013), 369-386.  Google Scholar

[44]

V. Evangelista, S. Marfia and E. Sacco, Phenomenological 3D and 1D consistent models for shape-memory alloy materials, Comput. Mech., {44} (2009), 405-421. doi: 10.1007/s00466-009-0381-8.  Google Scholar

[45]

V. Evangelista, S. Marfia and E. Sacco, A 3D SMA constitutive model in the framework of finite strain, Internat. J. Numer. Methods Engrg., 81 (2010), 761-785. doi: 10.1002/nme.2717.  Google Scholar

[46]

F. Falk, Model free energy, mechanics and thermodynamics of shape memory alloys, Acta Metal., 28 (1980), 1773-1780. doi: 10.1016/0001-6160(80)90030-9.  Google Scholar

[47]

F. Falk and P. Konopka, Three-dimensional Landau theory describing the martensitic phase transformation of shape-memory alloys, Continuum Models of Discrete Systems, 123-125 (1990), 113-122. doi: 10.4028/www.scientific.net/MSF.123-125.113.  Google Scholar

[48]

G. Francfort and A. Mielke, Existence results for a class of rate-independent material models with nonconvex elastic energies, J. Reine Angew. Math., 595 (2006), 55-91. doi: 10.1515/CRELLE.2006.044.  Google Scholar

[49]

M. Frémond, Matériaux à mémoire de forme, C. R. Acad. Sci. Paris Sér. II Méc. Phys. Chim. Sci. Univers Sci. Terre, 304 (1987), 239-244. Google Scholar

[50]

M. Frémond, Non-Smooth Thermomechanics, Springer-Verlag, Berlin, 2002. doi: 10.1007/978-3-662-04800-9.  Google Scholar

[51]

M. Frémond and S. Miyazaki, Shape Memory Alloys, CISM Courses and Lectures, Vol. 351, Springer-Verlag, 1996. Google Scholar

[52]

M. Frémond and E. Rocca, A model for shape memory alloys with the possibility of voids, Discrete Contin. Dyn. Syst., 27 (2010), 1633-1659. doi: 10.3934/dcds.2010.27.1633.  Google Scholar

[53]

S. Frigeri, P. Krejčí and U. Stefanelli, Quasistatic isothermal evolution of shape memory alloys, Math. Models Meth. Appl. Sci., 21 (2011), 2409-2432. doi: 10.1142/S0218202511005787.  Google Scholar

[54]

S. Frigeri and U. Stefanelli, Existence and time-discretization for the finite-strain Souza-Auricchio constitutive model for shape-memory alloys, Contin. Mech. Thermodyn., 24 (2012), 63-77. doi: 10.1007/s00161-011-0221-x.  Google Scholar

[55]

J.-Y. Gauthier, C. Lexcellent, A. Hubert, J. Abadie and N. Chaillet, Magneto-thermo-mechanical modeling of a magnetic shape memory alloy Ni-Mn-Ga single crystal, Ann. Solid Struct. Mech., 2 (2001), 19-31. doi: 10.1007/s12356-011-0014-8.  Google Scholar

[56]

S. Govindjee and C. Miehe, A multi-variant martensitic phase transformation model: Formulation and numerical implementation, Comput. Methods Appl. Mech. Engrg., 191 (2001), 215-238. doi: 10.1016/S0045-7825(01)00271-7.  Google Scholar

[57]

S. Govindjee and E. P. Kasper, A shape memory alloy model for uranium- niobium accounting for plasticity, J. Intelligent Mat. Syst. Struct., 8 (1997), 815-823. doi: 10.1177/1045389X9700801001.  Google Scholar

[58]

D. Grandi and U. Stefanelli, Modeling microstructure-dependent inelasticity in shape-memory alloys, preprint, IMATI-CNR 13PV13/11/0, 2013. Google Scholar

[59]

D. Helm and P. Haupt, Shape memory behaviour: Modelling within continuum thermomechanics, Intern. J. Solids Struct., 40 (2003), 827-849. doi: 10.1016/S0020-7683(02)00621-2.  Google Scholar

[60]

L. Hirsinger and C. Lexcellent, Internal variable model for magneto-mechanical behaviour of ferromagnetic shape memory alloys Ni-Mn-Ga, J. Phys. IV, 112 (2003), 977-980. doi: 10.1051/jp4:20031044.  Google Scholar

[61]

K.-H. Hoffmann, M. Niezgódka and Z. Songmu, Existence and uniqueness of global solutions to an extended model of the dynamical developments in shape memory alloys, Nonlinear Anal., 15 (1990), 977-990. doi: 10.1016/0362-546X(90)90079-V.  Google Scholar

[62]

K.-H. Hoffmann and D. Tiba, Control of a plate with nonlinear shape memory alloy reinforcements, Adv. Math. Sci. Appl., 7 (1997), 427-436.  Google Scholar

[63]

K.-H. Hoffmann and A. Żochowski, Control of the thermoelastic model of a plate activated by shape memory alloy reinforcements, Math. Methods Appl. Sci., 21 (1998), 589-603.  Google Scholar

[64]

R. D. James and M. Wuttig, Magnetostriction of martensite, Phil. Mag. A, 77 (1998), 1273-1299. doi: 10.1080/01418619808214252.  Google Scholar

[65]

H. E. Karaca, I. Karaman, B. Basaran, Y. I. Chumlyakov and H. J. Maier, Magnetic field and stress induced martensite reorientation in NiMnGa ferromagnetic shape memory alloy single crystals, Acta Mat., 54 (2006), 233-245. doi: 10.1016/j.actamat.2005.09.004.  Google Scholar

[66]

J. Kiang and L. Tong, Modelling of magneto-mechanical behaviour of Ni-Mn-Ga single crystals, J. Magn. Magn. Mater., 292 (2005), 394-412. doi: 10.1016/j.jmmm.2004.11.481.  Google Scholar

[67]

B. Kiefer, A Phenomelogical Model for Magnetic Shape Memory Alloys, Ph.D Thesis, Texas A&M, 2006. Google Scholar

[68]

B. Kiefer and D. C. Lagoudas, Modeling the coupled strain and magnetization response of magnetic shape memory alloys under magnetomechanical loading, J. Intell. Mater. Syst. Struct., 20 (2009), 143-170. doi: 10.1177/1045389X07086688.  Google Scholar

[69]

B. Kiefer, H. Karaca, D. C. Lagoudas and I. Karaman, Characterization and modeling of the magnetic field-induced strain and work output in Ni$_2$MnGa magnetic shape memory alloys, J. Magn. Magn. Mater., 312 (2007), 164-175. Google Scholar

[70]

P. Krejčí and U. Stefanelli, Existence and nonexistence for the full thermomechanical Souza-Auricchio model of shape memory wires, Math. Mech. Solids, 16 (2011), 349-365. doi: 10.1177/1081286510386935.  Google Scholar

[71]

P. Krejčí and U. Stefanelli, Well-posedness of a thermo-mechanical model for shape memory alloys under tension, M2AN Math. Model. Numer. Anal., 44 (2010), 1239-1253. doi: 10.1051/m2an/2010024.  Google Scholar

[72]

M. Kružík and J. Zimmer, A model of shape memory alloys taking into account plasticity, IMA J. Appl. Math., 76 (2011), 193-216. doi: 10.1093/imamat/hxq058.  Google Scholar

[73]

D. C. Lagoudas and P. Entchev, Modeling of transformation-induced plas- ticity and its effect on the behavior of porous shape memory alloys. Part I: Constitutive model for fully dense SMAs, Mech. Mat., 36 (2004), 865-892. Google Scholar

[74]

D. C. Lagoudas, P. B. Entchev, P. Popov, E. Patoor, L. C. Brinson and X. Gao, Shape memory alloys, Part II: Modeling of polycrystals, Mech. Materials, 38 (2006), 430-462. doi: 10.1016/j.mechmat.2005.08.003.  Google Scholar

[75]

E. Lee, Elastic-plastic deformation at finite strains, J. Appl. Mech, 36 (1969), 1-6. doi: 10.1115/1.3564580.  Google Scholar

[76]

V. I. Levitas, Thermomechanical theory of martensitic phase transformations in inelastic materials, Intern. J. Solids Struct., 35 (1998), 889-940. doi: 10.1016/S0020-7683(97)00089-9.  Google Scholar

[77]

Ch. Lexcellent, Shape-Memory Alloys Handbook, Wiley, 2013. doi: 10.1002/9781118577776.  Google Scholar

[78]

A. A. Likhachev and K. Ullakko, Magnetic-field-controlled twin boundaries motion and giant magneto-mechanical effects in Ni-Mn-Ga shape memory alloy, Phys. Lett. A, 275 (2000), 142-151. doi: 10.1016/S0375-9601(00)00561-2.  Google Scholar

[79]

B. Malard, J. Pilch, P. Šittner, R. Delville and C. Curfs, In situ investigation of the fast microstructure evolution during electropulse treatment of cold drawn NiTi wires, Acta Mater., 59 (2011), 1542-1556. doi: 10.1016/j.actamat.2010.11.018.  Google Scholar

[80]

A. Mainik and A. Mielke, Existence results for energetic models for rate-independent systems, Calc. Var. Partial Differential Equations, 22 (2005), 73-99. doi: 10.1007/s00526-004-0267-8.  Google Scholar

[81]

M. Maraldi, L. Molari and D. Grandi, A non-isothermal phase-field model for shape memory alloys: Numerical simulations of superelasticity and shape memory effect under stress- controlled conditions, J. Intelligent Mat. Syst. Struct., 23 (2012), 1083-1092. doi: 10.1177/1045389X12442012.  Google Scholar

[82]

M. Maraldi, L. Molari and D. Grandi, A macroscale, phase-field model for shape memory alloys with non-isothermal effects: Influence of strain-rate and environmental conditions on the mechanical response, Acta Mat., 60 (2012), 179-191. Google Scholar

[83]

C. Miehe, B. Kiefer and D. Rosato, An incremental variational formulation of dissipative magnetostriction at the macroscopic continuum level, Internat. J. Solids Struct., 48 (2011), 1846-1866. doi: 10.1016/j.ijsolstr.2011.02.011.  Google Scholar

[84]

A. Mielke, Evolution of rate-independent systems, in Handbook of Differential Equations, Evolutionary Equations (eds. C. Dafermos and E. Feireisl), Elsevier, II, 2005, 461-559.  Google Scholar

[85]

A. Mielke, Formulation of thermoelastic dissipative material behavior using GENERIC, Contin. Mech. Thermodyn., 23 (2011), 233-256. doi: 10.1007/s00161-010-0179-0.  Google Scholar

[86]

A. Mielke, On thermodynamically consistent models and gradient structures for thermoplasticity, GAMM Mitt., 34 (2011), 51-58. doi: 10.1002/gamm.201110008.  Google Scholar

[87]

A. Mielke, L. Paoli and A. Petrov, On existence and approximation for a 3D model of thermally induced phase transformations in shape-memory alloys, SIAM J. Math. Anal., 41 (2009), 1388-1414. doi: 10.1137/080726215.  Google Scholar

[88]

A. Mielke, L. Paoli, A. Petrov, U. Stefanelli, Error estimates for space-time discretizations of a rate-independent variational inequality, SIAM J. Numer. Anal., 48 (2010), 1625-1646. doi: 10.1137/090750238.  Google Scholar

[89]

A. Mielke, L. Paoli, A. Petrov and U. Stefanelli, Error bounds for space-time discretizations of a 3d model for shape-memory materials, in IUTAM Symposium on Variational Concepts with Applications to the Mechanics of Materials (ed. K. Hackl), IUTAM Bookseries, 21, Springer, 2010, 185-197. doi: 10.1007/978-90-481-9195-6_14.  Google Scholar

[90]

A. Mielke and A. Petrov, Thermally driven phase transformation in shape-memory alloys, Adv. Math. Sci. Appl., 17 (2007), 667-685.  Google Scholar

[91]

A. Mielke and F. Rindler, Reverse approximation of energetic solutions to rate-independent processes, NoDEA Nonlinear Differential Equations Appl., 16 (2009), 17-40. doi: 10.1007/s00030-008-7065-5.  Google Scholar

[92]

A. Mielke, T. Roubíček and U. Stefanelli, $\Gamma$-limits and relaxations for rate-independent evolutionary problems, Calc. Var. Partial Differential Equations, 31 (2008), 387-416. doi: 10.1007/s00526-007-0119-4.  Google Scholar

[93]

A. Mielke and U. Stefanelli, Linearized plasticity is the evolutionary $\Gamma$-limit of finite plasticity, J. Eur. Math. Soc. (JEMS), 15 (2013), 923-948. doi: 10.4171/JEMS/381.  Google Scholar

[94]

A. Mielke and F. Theil, On rate-independent hysteresis models, NoDEA Nonlinear Diff. Equations Applications, 11 (2004), 151-189. doi: 10.1007/s00030-003-1052-7.  Google Scholar

[95]

S. J. Murray, M. Marioni, P. G. Tello, S. M. Allen and R. C. O'Handley, Giant magnetic-field-induced strain in Ni-Mn-Ga crystals: Experimental results and modeling, J. Magn. Magn. Mater., 226-230 (2001), 945-947. doi: 10.1016/S0304-8853(00)00611-9.  Google Scholar

[96]

S. J. Murray, S. M. Allen, R. C. O'Handley and T. A. Lograsso, Magnetomechanical performance and mechanical properties of Ni-Mn-Ga ferromagnetic shape memory alloys, in SPIE Proceedings 3992, Smart Structures and Materials 2000: Active Materials: Behavior and Mechanics, 2000, 387. doi: 10.1117/12.388253.  Google Scholar

[97]

S. J. Murray, R. C. O'Handley and S. M. Allen, Model for discontinuous actuation of ferromagnetic shape memory alloy under stress, J. Appl. Phys., 89 (2000), 1295-1301. doi: 10.1063/1.1285867.  Google Scholar

[98]

R. C. O'Handley, Model for strain and magnetization in magnetic shape-memory alloys, J. Appl. Phys., 83 (1998), 3263-3270. Google Scholar

[99]

R. C. O'Handley, S. J. Murray, M. Marioni, H. Nembach and S. M. Allen, Phenomenology of giant magnetic-field-induced strain in ferromagnetic shape-memory materials,, J. Appl. Phys., 87 (): 4712.   Google Scholar

[100]

A. Paiva, M. A. Savi, A. M. B. Braga and P. M. C. L. Pacheco, A constitutive model for shape memory alloys considering tensile-compressive asymmetry and plasticity, Int. J. Solids Struct., 42 (2005), 3439-3457. doi: 10.1016/j.ijsolstr.2004.11.006.  Google Scholar

[101]

I. Pawłow and W. M. Zajaczkowski, Global existence to a three-dimensional non-linear thermoelasticity system arising in shape memory materials, Math. Methods Appl. Sci., 28 (2005), 407-442. doi: 10.1002/mma.574.  Google Scholar

[102]

L. Paoli and A. Petrov, Global existence result for phase transformations with heat transfer in shape memory alloys, preprint, arXiv:1104.5408, 2011. Google Scholar

[103]

L. Paoli and A. Petrov, Existence result for a class of generalized standard materials with thermomechanical coupling, preprint, arXiv:1111.2436, 2011. Google Scholar

[104]

L. Paoli and A. Petrov, Thermodynamics of multiphase problems in viscoelasticity, GAMM-Mitt., 35 (2012), 75-90. doi: 10.1002/gamm.201210006.  Google Scholar

[105]

L. Paoli and A. Petrov, Global existence result for thermoviscoelastic problems with hysteresis, Nonlinear Anal. Real World Appl., 13 (2012), 524-542. doi: 10.1016/j.nonrwa.2011.07.018.  Google Scholar

[106]

L. Paoli and A. Petrov, Solvability for a class of generalized standard materials with thermomechanical coupling, Nonlinear Anal. Real World Appl., 14 (2013), 111-130. doi: 10.1016/j.nonrwa.2012.05.006.  Google Scholar

[107]

I. Pawłow and A. Żochowski, A Control Problem for a Thermoelastic System in Shape Memory Materials. Free Boundary Problems, (Japanese), Sūrikaisekikenkyūsho Kōkyūroku, No. 1210, (2001), 8-23.  Google Scholar

[108]

B. Peultier, T. Ben Zineb and E. Patoor, Macroscopic constitutive law for SMA: Application to structure analysis by FEM, Materials Sci. Engrg. A, 438-440 (2006), 454-458. doi: 10.1016/j.msea.2006.01.104.  Google Scholar

[109]

P. Popov and D. C. Lagoudas, A 3-D constitutive model for shape memory alloys incorporating pseudoelasticity and detwinning of self-accommodated martensite, Int. J. Plasticity, 23 (2007), 1679-1720. doi: 10.1016/j.ijplas.2007.03.011.  Google Scholar

[110]

B. Raniecki and Ch. Lexcellent, $R_L$ models of pseudoelasticity and their specification for some shape-memory solids, Eur. J. Mech. A Solids, 13 (1994), 21-50.  Google Scholar

[111]

S. Reese and D. Christ, Finite deformation pseudo-elasticity of shape memory alloys - Constitutive modelling and finite element implementation, Int. J. Plasticity, 24 (2008), 455-482. doi: 10.1016/j.ijplas.2007.05.005.  Google Scholar

[112]

F. Rindler, Optimal control for nonconvex rate-independent evolution processes, SIAM J. Control Optim., 47 (2008), 2773-2794. doi: 10.1137/080718711.  Google Scholar

[113]

F. Rindler, Approximation of rate-independent optimal control problems, SIAM J. Numer. Anal., 47 (2009), 3884-3909. doi: 10.1137/080744050.  Google Scholar

[114]

T.Roubíček, Models of microstructure evolution in shape memory alloys, in Nonlinear Homogenization and its Appl.to Composites, Polycrystals and Smart Materials, (eds. P. Ponte Castaneda, J. J. Telega, B. Gambin), NATO Sci. Series II, 170, Kluwer, Dordrecht, 2004, 269-304. doi: 10.1007/1-4020-2623-4_12.  Google Scholar

[115]

T. Roubíček, Rate-independent processes in viscous solids at small strains, Math. Methods Appl. Sci., 32 (2009), 825-862. doi: 10.1002/mma.1069.  Google Scholar

[116]

T. Roubíček, Thermodynamics of rate-independent processes in viscous solids at small strains, SIAM J. Math. Anal., 42 (2010), 256-297. doi: 10.1137/080729992.  Google Scholar

[117]

T. Roubíček, Approximation in multiscale modelling of microstructure evolution in shape-memory alloys, Cont. Mech. Thermodynam., 23 (2011), 491-507. doi: 10.1007/s00161-011-0190-0.  Google Scholar

[118]

T. Roubíček, Nonlinearly coupled thermo-visco-elasticity, NoDEA Nonlinear Differential Equations Appl., 20 (2013), 1243-1275. doi: 10.1007/s00030-012-0207-9.  Google Scholar

[119]

T. Roubíček and U. Stefanelli, Magnetic shape-memory alloys: Thermomechanical modeling and analysis, preprint, IMATI-CNR 6PV13/0/0, 2013. Google Scholar

[120]

T. Roubíček and G. Tomassetti, Thermodynamics of shape-memory alloys under electric current, Z. Angew. Math. Phys., 61 (2010), 1-20. doi: 10.1007/s00033-009-0007-1.  Google Scholar

[121]

T. Roubíček and G. Tomassetti, Phase transformations in electrically conductive ferromagnetic shape-memory alloys, their thermodynamics and analysis, Arch. Ration. Mech. Anal., 210 (2013), 1-43. doi: 10.1007/s00205-013-0648-2.  Google Scholar

[122]

P. Šittner, Y. Hara and M. Tokuda, Experimental study on the thermoelastic martensitic transformation in shape memory alloy polycrystal induced by combined external forces, Metall. Materials Trans., 26 (1995), 2923-2935. doi: 10.1007/BF02669649.  Google Scholar

[123]

J. Sokołowski and J. Sprekels, Control problems with state constraints for shape memory alloys, Math. Methods Appl. Sci., 17 (1994), 943-952. doi: 10.1002/mma.1670171204.  Google Scholar

[124]

A. C. Souza, E. N. Mamiya and N. Zouain, Three-dimensional model for solids undergoing stress-induced tranformations, Eur. J. Mech. A Solids, 17 (1998), 789-806. doi: 10.1016/S0997-7538(98)80005-3.  Google Scholar

[125]

A. Sozinov, A. A. Likhachev, N. Lanska and K. Ullakko, Giant magnetic-field-induced strain in NiMnGa seven-layered martensitic phase, Appl. Phys. Lett., 80 (2002), 1746-1748. doi: 10.1063/1.1458075.  Google Scholar

[126]

U. Stefanelli, Analysis of a thermomechanical model for shape memory alloys, SIAM J. Math. Anal., 37 (2005), 130-155. doi: 10.1137/S0036141004444251.  Google Scholar

[127]

U. Stefanelli, Magnetic control of magnetic shape-memory single crystals, Phys. B, 407 (2012), 1316-1321. doi: 10.1016/j.physb.2011.06.043.  Google Scholar

[128]

P. Thamburaja and L. Anand, Polycrystalline shape-memory materials: Effect of crystallographic texture, J. Mech. Phys. Solids, 49 (2001), 709-737. doi: 10.1016/S0022-5096(00)00061-2.  Google Scholar

[129]

R. Tickle and R. D. James, Magnetic and magnetomechanical properties of $Ni_2MnGa$, J. Magn. Magn. Mater., 195 (1999), 627-638. Google Scholar

[130]

R. A. Vandermeer, J. C. Ogle and W. G. Jr. Northcutt, A phenomenological study of the shape memory effect in polycrystalline Uranium-Niobium alloys, Metal. Trans A, 12A (1981), 733-741. Google Scholar

[131]

A. Visintin, Differential Models of Hysteresis, Applied Mathematical Sciences, 111, Springer, Berlin, 1994. doi: 10.1007/978-3-662-11557-2.  Google Scholar

[132]

G. Wachsmuth, Optimal control of quasistatic plasticity with linear kinematic hardening, Part I: Existence and discretization in time, SIAM J. Control Optim., 50 (2012), 2836-2861. doi: 10.1137/110839187.  Google Scholar

[133]

G. Wachsmuth, Optimal control of quasistatic plasticity with linear kinematic hardening, part II: Regularization and differentiability, preprint, SPP1253-119, 2011. Google Scholar

[134]

G. Wachsmuth, Optimal control of quasistatic plasticity with linear kinematic hardening, part III: Optimality conditions, preprint, SPP1253-119, 2011. Google Scholar

[135]

J. Wang and P. Steinmann, A variational approach towards the modelling of magnetic field-induced strains in magnetic shape memory alloys, J. Mech. Phys. Solids, 60 (2012), 1179-1200. doi: 10.1016/j.jmps.2012.02.003.  Google Scholar

[136]

S. Yoshikawa, I. Pawłow and W. M. Zajaczkowski, Quasi-linear thermoelasticity system arising in shape memory materials, SIAM J. Math. Anal., 38 (2007), 1733-1759. doi: 10.1137/060653159.  Google Scholar

[137]

J. Zimmer, Global existence for a nonlinear system in thermoviscoelasticity with nonconvex energy, J. Math. Anal. Appl., 292 (2004), 589-604. doi: 10.1016/j.jmaa.2003.12.010.  Google Scholar

[1]

Tomáš Roubíček. Modelling of thermodynamics of martensitic transformation in shape-memory alloys. Conference Publications, 2007, 2007 (Special) : 892-902. doi: 10.3934/proc.2007.2007.892

[2]

Michel Frémond, Elisabetta Rocca. A model for shape memory alloys with the possibility of voids. Discrete & Continuous Dynamical Systems, 2010, 27 (4) : 1633-1659. doi: 10.3934/dcds.2010.27.1633

[3]

Michela Eleuteri, Luca Lussardi, Ulisse Stefanelli. Thermal control of the Souza-Auricchio model for shape memory alloys. Discrete & Continuous Dynamical Systems - S, 2013, 6 (2) : 369-386. doi: 10.3934/dcdss.2013.6.369

[4]

Linxiang Wang, Roderick Melnik. Dynamics of shape memory alloys patches with mechanically induced transformations. Discrete & Continuous Dynamical Systems, 2006, 15 (4) : 1237-1252. doi: 10.3934/dcds.2006.15.1237

[5]

Shuji Yoshikawa, Irena Pawłow, Wojciech M. Zajączkowski. A quasilinear thermoviscoelastic system for shape memory alloys with temperature dependent specific heat. Communications on Pure & Applied Analysis, 2009, 8 (3) : 1093-1115. doi: 10.3934/cpaa.2009.8.1093

[6]

Alessia Berti, Claudio Giorgi, Elena Vuk. Free energies and pseudo-elastic transitions for shape memory alloys. Discrete & Continuous Dynamical Systems - S, 2013, 6 (2) : 293-316. doi: 10.3934/dcdss.2013.6.293

[7]

Ferdinando Auricchio, Elena Bonetti. A new "flexible" 3D macroscopic model for shape memory alloys. Discrete & Continuous Dynamical Systems - S, 2013, 6 (2) : 277-291. doi: 10.3934/dcdss.2013.6.277

[8]

Barbora Benešová, Miroslav Frost, Lukáš Kadeřávek, Tomáš Roubíček, Petr Sedlák. An experimentally-fitted thermodynamical constitutive model for polycrystalline shape memory alloys. Discrete & Continuous Dynamical Systems - S, 2021, 14 (11) : 3925-3952. doi: 10.3934/dcdss.2020459

[9]

Toyohiko Aiki, Martijn Anthonissen, Adrian Muntean. On a one-dimensional shape-memory alloy model in its fast-temperature-activation limit. Discrete & Continuous Dynamical Systems - S, 2012, 5 (1) : 15-28. doi: 10.3934/dcdss.2012.5.15

[10]

Takashi Suzuki, Shuji Yoshikawa. Stability of the steady state for multi-dimensional thermoelastic systems of shape memory alloys. Discrete & Continuous Dynamical Systems - S, 2012, 5 (1) : 209-217. doi: 10.3934/dcdss.2012.5.209

[11]

Ken Shirakawa. Asymptotic stability for dynamical systems associated with the one-dimensional Frémond model of shape memory alloys. Conference Publications, 2003, 2003 (Special) : 798-808. doi: 10.3934/proc.2003.2003.798

[12]

Toyohiko Aiki. On the existence of a weak solution to a free boundary problem for a model of a shape memory alloy spring. Discrete & Continuous Dynamical Systems - S, 2012, 5 (1) : 1-13. doi: 10.3934/dcdss.2012.5.1

[13]

Shuyang Dai, Fengru Wang, Jerry Zhijian Yang, Cheng Yuan. On the Cauchy-Born approximation at finite temperature for alloys. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021176

[14]

Toyohiko Aiki. The position of the joint of shape memory alloy and bias springs. Discrete & Continuous Dynamical Systems - S, 2011, 4 (2) : 239-246. doi: 10.3934/dcdss.2011.4.239

[15]

Michela Eleuteri, Luca Lussardi, Ulisse Stefanelli. A rate-independent model for permanent inelastic effects in shape memory materials. Networks & Heterogeneous Media, 2011, 6 (1) : 145-165. doi: 10.3934/nhm.2011.6.145

[16]

Chiara Corsato, Colette De Coster, Pierpaolo Omari. Radially symmetric solutions of an anisotropic mean curvature equation modeling the corneal shape. Conference Publications, 2015, 2015 (special) : 297-303. doi: 10.3934/proc.2015.0297

[17]

Martha Garlick, James Powell, David Eyre, Thomas Robbins. Mathematically modeling PCR: An asymptotic approximation with potential for optimization. Mathematical Biosciences & Engineering, 2010, 7 (2) : 363-384. doi: 10.3934/mbe.2010.7.363

[18]

Michela Eleuteri, Luca Lussardi. Thermal control of a rate-independent model for permanent inelastic effects in shape memory materials. Evolution Equations & Control Theory, 2014, 3 (3) : 411-427. doi: 10.3934/eect.2014.3.411

[19]

Luca Lussardi. On a Poisson's equation arising from magnetism. Discrete & Continuous Dynamical Systems - S, 2015, 8 (4) : 769-772. doi: 10.3934/dcdss.2015.8.769

[20]

Tomáš Roubíček. Thermodynamics of perfect plasticity. Discrete & Continuous Dynamical Systems - S, 2013, 6 (1) : 193-214. doi: 10.3934/dcdss.2013.6.193

2020 Impact Factor: 2.425

Metrics

  • PDF downloads (164)
  • HTML views (0)
  • Cited by (6)

Other articles
by authors

[Back to Top]