\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Some inverse problems of identification for integrodifferential parabolic systems with a boundary memory term

Abstract Related Papers Cited by
  • We discuss two inverse problems of reconstruction of data in a mixed parabolic integrodifferential problem. First, we shall consider the reconstruction on a factor depending on time in the source term. Next, we shall consider the reconstruction of a convolution kernel.
    Mathematics Subject Classification: 35K15, 65M32, 47G20.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    C. Cavaterra and F. Colombo, Identifying a heat source in automatic control problems, Comm. Appl. Nonlinear Anal., 11 (2014), 1-23.

    [2]

    C. Cavaterra and D. Guidetti, Identification of a convolution kernel in a control problem for the heat equation with a boundary memory term, Ann. Mat. Pura Appl., 193 (2014), 779-816.doi: 10.1007/s10231-012-0301-y.

    [3]

    C. Cavaterra and D. Guidetti, Identification of a source factor in a control problem for the heat equation with a boundary memory term, submitted.

    [4]

    P. Colli, M. Grasselli and J. Sprekels, Automatic control via thermostats of a hyperbolic Stefan problem with memory, Appl. Math. Optim., 39 (1999), 229-255.doi: 10.1007/s002459900105.

    [5]

    L. De Simon, Un'applicazione della teoria degli integrali singolari allo studio delle equazioni differenziali lineari astratte del primo ordine, Rend. Sem. Mat. Univ. Padova, 34 (1964), 205-223.

    [6]

    D. Guidetti, Some remarks on operators preserving oscillations, to appear in Rend. Sem. Mat.Univ. Pol. Torino.

    [7]

    M. Krasnosel'skii and A. Pokrovskii, Systems with Hysteresis, Springer-Verlag, Berlin, 1989.doi: 10.1007/978-3-642-61302-9.

    [8]

    O. A. Ladyzhenskaja, V. A. Solonnikov and N. N. Ural'ceva, Linear and Quasilinear Equations of Parabolic Type, Transl. Math. Monographs, AMS, 1968.

    [9]

    J. L. Lions and E. Magenes, Problémes Aux Limites Non Homogénes et Applications, Vol. II, Springer-Verlag, 1972.

    [10]

    A. I. Prilepko, D. G. Orlovsky and I. A. Vasin, Methods for Solving Inverse Problems in Mathematical Physics, Monographs and Textbooks in Pure and Applied Mathematics, 231, Marcel Dekker, Inc., New York, 2000.

    [11]

    H. Triebel, Theory of Function Spaces, Birkhäuser, 1983.doi: 10.1007/978-3-0346-0416-1.

    [12]

    A. Visintin, Differential Models in Hysteresis, Applied Mathematical Sciences, 111, Springer-Verlag, Berlin, 1994.doi: 10.1007/978-3-662-11557-2.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(68) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return