# American Institute of Mathematical Sciences

October  2015, 8(5): 847-856. doi: 10.3934/dcdss.2015.8.847

## Reduced model from a reaction-diffusion system of collective motion of camphor boats

 1 Department of Mathematics, Faculty of Science, Hokkaido University, Sapporo, 060-0810 2 Department of Mathematical Sciences Based on Modeling and Analysis, Meiji University, Nakano-ku, Tokyo, 164-8525 3 Research Institute for Electronic Science, Hokkaido University / JST CREST, Sapporo, 060-0812, Japan 4 Faculty of Engineering, Musashino University / JST CREST, Koto-ku, Tokyo, 135-8181, Japan

Received  December 2013 Revised  July 2014 Published  July 2015

Various motions of camphor boats in the water channel exhibit both a homogeneous and an inhomogeneous state, depending on the number of boats, when unidirectional motion along an annular water channel can be observed even with only one camphor boat. In a theoretical research, the unidirectional motion is represented by a traveling wave solution in a model. Since the experimental results described above are thought of as a kind of bifurcation phenomena, we would like to investigate a linearized eigenvalue problem in order to prove the destabilization of a traveling wave solution. However, the eigenvalue problem is too difficult to analyze even if the number of camphor boats is 2. Hence we need to make a reduction on the model. In the present paper, we apply the center manifold theory and reduce the model to an ordinary differential system.
Citation: Shin-Ichiro Ei, Kota Ikeda, Masaharu Nagayama, Akiyasu Tomoeda. Reduced model from a reaction-diffusion system of collective motion of camphor boats. Discrete and Continuous Dynamical Systems - S, 2015, 8 (5) : 847-856. doi: 10.3934/dcdss.2015.8.847
##### References:
 [1] M. K. Chaudhury and G. M. Whitesides, How to make water run uphill, Science, 256 (1992), 1539-1541. doi: 10.1126/science.256.5063.1539. [2] S.-I. Ei, The motion of weakly interacting pulses in reaction-diffusion systems, J. Dynam. Differential Equations, 14 (2002), 85-137. doi: 10.1023/A:1012980128575. [3] S.-I. Ei, M. Mimura and M. Nagayama, Pulse-pulse interaction in reaction-diffusion systems, Physica D, 165 (2002), 176-198. doi: 10.1016/S0167-2789(02)00379-2. [4] E. Heisler, N. J. Suematsu, A. Awazu and H. Hiraku, Swarming of self-propelled camphor boats, Physical Review E, 85 (2012), 055201. doi: 10.1103/PhysRevE.85.055201. [5] D. Helbing, I. Farkas and T. Vicsek, Simulating dynamical features of escape panic, Nature, 407 (2000), 487-490. [6] S.-I. Ei, K. Ikeda, M. Nagayama and A. Tomoeda, Application of a center manifold theory to a reaction-diffusion system of collective motion of camphor disks and boats, Math. Bohem., 139 (2014), 363-371. [7] M. Inaba, H. Yamanaka and S. Kondo, Pigment pattern formation by contact-dependent depolarization, Science, 335 (2012), 677. doi: 10.1126/science.1212821. [8] T. Miura and R. Tanaka, In Vitro vasculogenesis models revisited-measurement of VEGF diffusion in matrigel, Mathematical Modelling of Natural Phenomena, 4 (2009), 118-130. doi: 10.1051/mmnp/20094404. [9] M. Nagayama, S. Nakata, Y. Doi and Y. Hayashima, A theoretical and experimental study on the unidirectional motion of a camphor disk, Physica D: Nonlinear Phenomena, 194 (2004), 151-165. doi: 10.1016/j.physd.2004.02.003. [10] S. Nakata, Y. Iguchi, S. Ose, M. Kuboyama, T. Ishii and K. Yoshikawa, Self-rotation of a camphor scraping on water: New insight into the old problem, Langmuir, 13 (1997), 4454-4458. doi: 10.1021/la970196p. [11] N. J. Suematsu, S. Nakata, A. Awazu and H. Nishimori, Collective behavior of inanimate boats, Physical Review E, 81 (2010), 056210. doi: 10.1103/PhysRevE.81.056210. [12] A. Tomoeda, K. Nishinari. D. Chowdhury and A. Schadschneider, An information-based traffic control in a public conveyance system: Reduced clustering and enhanced efficiency, Physica A: Statistical Mechanics and its Applications, 384 (2007), 600-612. doi: 10.1016/j.physa.2007.05.047. [13] A. Tomoeda, D. Yanagisawa, T. Imamura and K. Nishinari, Propagation speed of a starting wave in a queue of pedestrians, Physical Review E, 86 (2012), 036113. doi: 10.1103/PhysRevE.86.036113.

show all references

##### References:
 [1] M. K. Chaudhury and G. M. Whitesides, How to make water run uphill, Science, 256 (1992), 1539-1541. doi: 10.1126/science.256.5063.1539. [2] S.-I. Ei, The motion of weakly interacting pulses in reaction-diffusion systems, J. Dynam. Differential Equations, 14 (2002), 85-137. doi: 10.1023/A:1012980128575. [3] S.-I. Ei, M. Mimura and M. Nagayama, Pulse-pulse interaction in reaction-diffusion systems, Physica D, 165 (2002), 176-198. doi: 10.1016/S0167-2789(02)00379-2. [4] E. Heisler, N. J. Suematsu, A. Awazu and H. Hiraku, Swarming of self-propelled camphor boats, Physical Review E, 85 (2012), 055201. doi: 10.1103/PhysRevE.85.055201. [5] D. Helbing, I. Farkas and T. Vicsek, Simulating dynamical features of escape panic, Nature, 407 (2000), 487-490. [6] S.-I. Ei, K. Ikeda, M. Nagayama and A. Tomoeda, Application of a center manifold theory to a reaction-diffusion system of collective motion of camphor disks and boats, Math. Bohem., 139 (2014), 363-371. [7] M. Inaba, H. Yamanaka and S. Kondo, Pigment pattern formation by contact-dependent depolarization, Science, 335 (2012), 677. doi: 10.1126/science.1212821. [8] T. Miura and R. Tanaka, In Vitro vasculogenesis models revisited-measurement of VEGF diffusion in matrigel, Mathematical Modelling of Natural Phenomena, 4 (2009), 118-130. doi: 10.1051/mmnp/20094404. [9] M. Nagayama, S. Nakata, Y. Doi and Y. Hayashima, A theoretical and experimental study on the unidirectional motion of a camphor disk, Physica D: Nonlinear Phenomena, 194 (2004), 151-165. doi: 10.1016/j.physd.2004.02.003. [10] S. Nakata, Y. Iguchi, S. Ose, M. Kuboyama, T. Ishii and K. Yoshikawa, Self-rotation of a camphor scraping on water: New insight into the old problem, Langmuir, 13 (1997), 4454-4458. doi: 10.1021/la970196p. [11] N. J. Suematsu, S. Nakata, A. Awazu and H. Nishimori, Collective behavior of inanimate boats, Physical Review E, 81 (2010), 056210. doi: 10.1103/PhysRevE.81.056210. [12] A. Tomoeda, K. Nishinari. D. Chowdhury and A. Schadschneider, An information-based traffic control in a public conveyance system: Reduced clustering and enhanced efficiency, Physica A: Statistical Mechanics and its Applications, 384 (2007), 600-612. doi: 10.1016/j.physa.2007.05.047. [13] A. Tomoeda, D. Yanagisawa, T. Imamura and K. Nishinari, Propagation speed of a starting wave in a queue of pedestrians, Physical Review E, 86 (2012), 036113. doi: 10.1103/PhysRevE.86.036113.
 [1] Camillo De Lellis, Emanuele Spadaro. Center manifold: A case study. Discrete and Continuous Dynamical Systems, 2011, 31 (4) : 1249-1272. doi: 10.3934/dcds.2011.31.1249 [2] Claudia Valls. The Boussinesq system:dynamics on the center manifold. Communications on Pure and Applied Analysis, 2005, 4 (4) : 839-860. doi: 10.3934/cpaa.2005.4.839 [3] Hongyu Cheng, Rafael de la Llave. Time dependent center manifold in PDEs. Discrete and Continuous Dynamical Systems, 2020, 40 (12) : 6709-6745. doi: 10.3934/dcds.2020213 [4] Hongyong Zhao, Daiyong Wu. Point to point traveling wave and periodic traveling wave induced by Hopf bifurcation for a diffusive predator-prey system. Discrete and Continuous Dynamical Systems - S, 2020, 13 (11) : 3271-3284. doi: 10.3934/dcdss.2020129 [5] Josselin Garnier, George Papanicolaou, Tzu-Wei Yang. Mean field model for collective motion bistability. Discrete and Continuous Dynamical Systems - B, 2019, 24 (2) : 851-879. doi: 10.3934/dcdsb.2018210 [6] Yoichi Enatsu, Emiko Ishiwata, Takeo Ushijima. Traveling wave solution for a diffusive simple epidemic model with a free boundary. Discrete and Continuous Dynamical Systems - S, 2021, 14 (3) : 835-850. doi: 10.3934/dcdss.2020387 [7] Ran Zhang, Shengqiang Liu. On the asymptotic behaviour of traveling wave solution for a discrete diffusive epidemic model. Discrete and Continuous Dynamical Systems - B, 2021, 26 (2) : 1197-1204. doi: 10.3934/dcdsb.2020159 [8] Jong-Shenq Guo, Ying-Chih Lin. Traveling wave solution for a lattice dynamical system with convolution type nonlinearity. Discrete and Continuous Dynamical Systems, 2012, 32 (1) : 101-124. doi: 10.3934/dcds.2012.32.101 [9] Sergey V. Bolotin, Piero Negrini. Global regularization for the $n$-center problem on a manifold. Discrete and Continuous Dynamical Systems, 2002, 8 (4) : 873-892. doi: 10.3934/dcds.2002.8.873 [10] Stefano Bianchini, Alberto Bressan. A center manifold technique for tracing viscous waves. Communications on Pure and Applied Analysis, 2002, 1 (2) : 161-190. doi: 10.3934/cpaa.2002.1.161 [11] Kelum Gajamannage, Erik M. Bollt. Detecting phase transitions in collective behavior using manifold's curvature. Mathematical Biosciences & Engineering, 2017, 14 (2) : 437-453. doi: 10.3934/mbe.2017027 [12] Ezio Di Costanzo, Marta Menci, Eleonora Messina, Roberto Natalini, Antonia Vecchio. A hybrid model of collective motion of discrete particles under alignment and continuum chemotaxis. Discrete and Continuous Dynamical Systems - B, 2020, 25 (1) : 443-472. doi: 10.3934/dcdsb.2019189 [13] A. Carati. Center manifold of unstable periodic orbits of helium atom: numerical evidence. Discrete and Continuous Dynamical Systems - B, 2003, 3 (1) : 97-104. doi: 10.3934/dcdsb.2003.3.97 [14] Weiguo Zhang, Yan Zhao, Xiang Li. Qualitative analysis to the traveling wave solutions of Kakutani-Kawahara equation and its approximate damped oscillatory solution. Communications on Pure and Applied Analysis, 2013, 12 (2) : 1075-1090. doi: 10.3934/cpaa.2013.12.1075 [15] Hai-Feng Huo, Shi-Ke Hu, Hong Xiang. Traveling wave solution for a diffusion SEIR epidemic model with self-protection and treatment. Electronic Research Archive, 2021, 29 (3) : 2325-2358. doi: 10.3934/era.2020118 [16] Hayato Chiba, Georgi S. Medvedev. The mean field analysis of the kuramoto model on graphs Ⅱ. asymptotic stability of the incoherent state, center manifold reduction, and bifurcations. Discrete and Continuous Dynamical Systems, 2019, 39 (7) : 3897-3921. doi: 10.3934/dcds.2019157 [17] Guo Lin, Wan-Tong Li. Traveling wave solutions of a competitive recursion. Discrete and Continuous Dynamical Systems - B, 2012, 17 (1) : 173-189. doi: 10.3934/dcdsb.2012.17.173 [18] Jingli Ren, Gail S. K. Wolkowicz. Preface: Recent advances in bifurcation theory and application. Discrete and Continuous Dynamical Systems - S, 2020, 13 (11) : i-ii. doi: 10.3934/dcdss.2020417 [19] Todd Young. A result in global bifurcation theory using the Conley index. Discrete and Continuous Dynamical Systems, 1996, 2 (3) : 387-396. doi: 10.3934/dcds.1996.2.387 [20] Gunog Seo, Gail S. K. Wolkowicz. Pest control by generalist parasitoids: A bifurcation theory approach. Discrete and Continuous Dynamical Systems - S, 2020, 13 (11) : 3157-3187. doi: 10.3934/dcdss.2020163

2020 Impact Factor: 2.425