\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Conserved quantities of the integrable discrete hungry systems

Abstract Related Papers Cited by
  • In this paper, conserved quantities of the discrete hungry Lotka-Volterra (dhLV) system are derived. Our approach is based on the Lax representation of the dhLV system, which expresses the time evolution of the dhLV system as a similarity transformation on a certain square matrix. Thus, coefficients of the characteristic polynomial of this matrix constitute conserved quantities of the dhLV system. These coefficients are calculated explicitly through a recurrence relation among the characteristic polynomials of its leading principal submatrices. The conserved quantities of the discrete hungry Toda (dhToda) equation is also derived with the help of the Bäcklund transformation between the dhLV system and the dhToda equation.
    Mathematics Subject Classification: Primary: 37K10; Secondary: 39A99.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    LAPACK:http://www.netlib.org/lapack/ .

    [2]

    A. Fukuda, E. Ishiwata, M. Iwasaki and Y. Nakamura, The discrete hungry Lotka-Volterra system and a new algorithm for computing matrix eigenvalues, Inverse Probl., 25 (2009), 015007, 17pp.doi: 10.1088/0266-5611/25/1/015007.

    [3]

    A. Fukuda, E. Ishiwata, Y. Yamamoto, M. Iwasaki and Y. Nakamura, Integrable discrete hungry systems and their related matrix eigenvalues, Annal. Mat. Pura Appl., 192 (2013), 423-445.doi: 10.1007/s10231-011-0231-0.

    [4]

    A. Fukuda, Y. Yamamoto, M. Iwasaki, E. Ishiwata and Y. Nakamura, A Bäcklund transformation between two integrable discrete hungry systems, Phys. Lett. A, 375 (2011), 303-308.doi: 10.1016/j.physleta.2010.11.029.

    [5]

    R. Hirota, S. Tsujimoto and T. Imai, Difference scheme of soliton equations, Sūrikaisekikenkyūsho Kōkyūroku, 822 (1993), 144-152.

    [6]

    M. Iwasaki and Y. Nakamura, On the convergence of a solution of the discrete Lotka-Volterra system, Inverse Probl., 18 (2002), 1569-1578.doi: 10.1088/0266-5611/18/6/309.

    [7]

    M. Iwasaki and Y. Nakamura, Accurate computation of singular values in terms of shifted integrable schemes, Jpn. J. Indust. Appl. Math., 23 (2006), 239-259.doi: 10.1007/BF03167593.

    [8]

    T. Tokihiro, A. Nagai and J. Satsuma, Proof of solitonial nature of box and ball systems by means of inverse ultra-discretization, Inverse Problems, 15 (1999), 1639-1662.doi: 10.1088/0266-5611/15/6/314.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(121) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return