-
Previous Article
Error estimates for a nonlinear local projection stabilization of transient convection--diffusion--reaction equations
- DCDS-S Home
- This Issue
-
Next Article
On spiral solutions to generalized crystalline motion with a rotating tip motion
Conserved quantities of the integrable discrete hungry systems
1. | Department of Mathematical Science for Information Sciences, Graduate School of Science, Tokyo University of Science, Tokyo 162-8601, Japan |
2. | Department of Mathematical Sciences, Shibaura Institute of Technology, Saitama 337-8570, Japan |
3. | Department of Communication Engineering and Informatics, The University of Electro-Communications, Tokyo 182-8585, Japan/JST CREST, Tokyo, Japan |
4. | Faculty of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto 606-8522, Japan |
5. | Department of Mathematical Information Science, Tokyo University of Science, Tokyo 162-8601, Japan |
6. | Graduate School of Informatics, Kyoto University, Kyoto 606-8501, Japan |
References:
[1] |
LAPACK:, http://www.netlib.org/lapack/, ., ().
|
[2] |
A. Fukuda, E. Ishiwata, M. Iwasaki and Y. Nakamura, The discrete hungry Lotka-Volterra system and a new algorithm for computing matrix eigenvalues, Inverse Probl., 25 (2009), 015007, 17pp.
doi: 10.1088/0266-5611/25/1/015007. |
[3] |
A. Fukuda, E. Ishiwata, Y. Yamamoto, M. Iwasaki and Y. Nakamura, Integrable discrete hungry systems and their related matrix eigenvalues, Annal. Mat. Pura Appl., 192 (2013), 423-445.
doi: 10.1007/s10231-011-0231-0. |
[4] |
A. Fukuda, Y. Yamamoto, M. Iwasaki, E. Ishiwata and Y. Nakamura, A Bäcklund transformation between two integrable discrete hungry systems, Phys. Lett. A, 375 (2011), 303-308.
doi: 10.1016/j.physleta.2010.11.029. |
[5] |
R. Hirota, S. Tsujimoto and T. Imai, Difference scheme of soliton equations, Sūrikaisekikenkyūsho Kōkyūroku, 822 (1993), 144-152. |
[6] |
M. Iwasaki and Y. Nakamura, On the convergence of a solution of the discrete Lotka-Volterra system, Inverse Probl., 18 (2002), 1569-1578.
doi: 10.1088/0266-5611/18/6/309. |
[7] |
M. Iwasaki and Y. Nakamura, Accurate computation of singular values in terms of shifted integrable schemes, Jpn. J. Indust. Appl. Math., 23 (2006), 239-259.
doi: 10.1007/BF03167593. |
[8] |
T. Tokihiro, A. Nagai and J. Satsuma, Proof of solitonial nature of box and ball systems by means of inverse ultra-discretization, Inverse Problems, 15 (1999), 1639-1662.
doi: 10.1088/0266-5611/15/6/314. |
show all references
References:
[1] |
LAPACK:, http://www.netlib.org/lapack/, ., ().
|
[2] |
A. Fukuda, E. Ishiwata, M. Iwasaki and Y. Nakamura, The discrete hungry Lotka-Volterra system and a new algorithm for computing matrix eigenvalues, Inverse Probl., 25 (2009), 015007, 17pp.
doi: 10.1088/0266-5611/25/1/015007. |
[3] |
A. Fukuda, E. Ishiwata, Y. Yamamoto, M. Iwasaki and Y. Nakamura, Integrable discrete hungry systems and their related matrix eigenvalues, Annal. Mat. Pura Appl., 192 (2013), 423-445.
doi: 10.1007/s10231-011-0231-0. |
[4] |
A. Fukuda, Y. Yamamoto, M. Iwasaki, E. Ishiwata and Y. Nakamura, A Bäcklund transformation between two integrable discrete hungry systems, Phys. Lett. A, 375 (2011), 303-308.
doi: 10.1016/j.physleta.2010.11.029. |
[5] |
R. Hirota, S. Tsujimoto and T. Imai, Difference scheme of soliton equations, Sūrikaisekikenkyūsho Kōkyūroku, 822 (1993), 144-152. |
[6] |
M. Iwasaki and Y. Nakamura, On the convergence of a solution of the discrete Lotka-Volterra system, Inverse Probl., 18 (2002), 1569-1578.
doi: 10.1088/0266-5611/18/6/309. |
[7] |
M. Iwasaki and Y. Nakamura, Accurate computation of singular values in terms of shifted integrable schemes, Jpn. J. Indust. Appl. Math., 23 (2006), 239-259.
doi: 10.1007/BF03167593. |
[8] |
T. Tokihiro, A. Nagai and J. Satsuma, Proof of solitonial nature of box and ball systems by means of inverse ultra-discretization, Inverse Problems, 15 (1999), 1639-1662.
doi: 10.1088/0266-5611/15/6/314. |
[1] |
Xiaoli Liu, Dongmei Xiao. Bifurcations in a discrete time Lotka-Volterra predator-prey system. Discrete and Continuous Dynamical Systems - B, 2006, 6 (3) : 559-572. doi: 10.3934/dcdsb.2006.6.559 |
[2] |
Lih-Ing W. Roeger, Razvan Gelca. Dynamically consistent discrete-time Lotka-Volterra competition models. Conference Publications, 2009, 2009 (Special) : 650-658. doi: 10.3934/proc.2009.2009.650 |
[3] |
Jacky Cresson, Fernando Jiménez, Sina Ober-Blöbaum. Continuous and discrete Noether's fractional conserved quantities for restricted calculus of variations. Journal of Geometric Mechanics, 2022, 14 (1) : 57-89. doi: 10.3934/jgm.2021012 |
[4] |
Rui Xu, M.A.J. Chaplain, F.A. Davidson. Periodic solutions of a discrete nonautonomous Lotka-Volterra predator-prey model with time delays. Discrete and Continuous Dynamical Systems - B, 2004, 4 (3) : 823-831. doi: 10.3934/dcdsb.2004.4.823 |
[5] |
Lih-Ing W. Roeger. Dynamically consistent discrete Lotka-Volterra competition models derived from nonstandard finite-difference schemes. Discrete and Continuous Dynamical Systems - B, 2008, 9 (2) : 415-429. doi: 10.3934/dcdsb.2008.9.415 |
[6] |
Guo-Bao Zhang, Ruyun Ma, Xue-Shi Li. Traveling waves of a Lotka-Volterra strong competition system with nonlocal dispersal. Discrete and Continuous Dynamical Systems - B, 2018, 23 (2) : 587-608. doi: 10.3934/dcdsb.2018035 |
[7] |
Qi Wang, Yang Song, Lingjie Shao. Boundedness and persistence of populations in advective Lotka-Volterra competition system. Discrete and Continuous Dynamical Systems - B, 2018, 23 (6) : 2245-2263. doi: 10.3934/dcdsb.2018195 |
[8] |
Yuan Lou, Dongmei Xiao, Peng Zhou. Qualitative analysis for a Lotka-Volterra competition system in advective homogeneous environment. Discrete and Continuous Dynamical Systems, 2016, 36 (2) : 953-969. doi: 10.3934/dcds.2016.36.953 |
[9] |
Linping Peng, Zhaosheng Feng, Changjian Liu. Quadratic perturbations of a quadratic reversible Lotka-Volterra system with two centers. Discrete and Continuous Dynamical Systems, 2014, 34 (11) : 4807-4826. doi: 10.3934/dcds.2014.34.4807 |
[10] |
Dan Wei, Shangjiang Guo. Qualitative analysis of a Lotka-Volterra competition-diffusion-advection system. Discrete and Continuous Dynamical Systems - B, 2021, 26 (5) : 2599-2623. doi: 10.3934/dcdsb.2020197 |
[11] |
Fuke Wu, Yangzi Hu. Stochastic Lotka-Volterra system with unbounded distributed delay. Discrete and Continuous Dynamical Systems - B, 2010, 14 (1) : 275-288. doi: 10.3934/dcdsb.2010.14.275 |
[12] |
Jong-Shenq Guo, Ying-Chih Lin. The sign of the wave speed for the Lotka-Volterra competition-diffusion system. Communications on Pure and Applied Analysis, 2013, 12 (5) : 2083-2090. doi: 10.3934/cpaa.2013.12.2083 |
[13] |
Qi Wang, Chunyi Gai, Jingda Yan. Qualitative analysis of a Lotka-Volterra competition system with advection. Discrete and Continuous Dynamical Systems, 2015, 35 (3) : 1239-1284. doi: 10.3934/dcds.2015.35.1239 |
[14] |
Anthony W. Leung, Xiaojie Hou, Wei Feng. Traveling wave solutions for Lotka-Volterra system re-visited. Discrete and Continuous Dynamical Systems - B, 2011, 15 (1) : 171-196. doi: 10.3934/dcdsb.2011.15.171 |
[15] |
Zengji Du, Shuling Yan, Kaige Zhuang. Traveling wave fronts in a diffusive and competitive Lotka-Volterra system. Discrete and Continuous Dynamical Systems - S, 2021, 14 (9) : 3097-3111. doi: 10.3934/dcdss.2021010 |
[16] |
Juan Luis García Guirao, Marek Lampart. Transitivity of a Lotka-Volterra map. Discrete and Continuous Dynamical Systems - B, 2008, 9 (1) : 75-82. doi: 10.3934/dcdsb.2008.9.75 |
[17] |
Xiao He, Sining Zheng. Protection zone in a modified Lotka-Volterra model. Discrete and Continuous Dynamical Systems - B, 2015, 20 (7) : 2027-2038. doi: 10.3934/dcdsb.2015.20.2027 |
[18] |
Zhaohai Ma, Rong Yuan, Yang Wang, Xin Wu. Multidimensional stability of planar traveling waves for the delayed nonlocal dispersal competitive Lotka-Volterra system. Communications on Pure and Applied Analysis, 2019, 18 (4) : 2069-2092. doi: 10.3934/cpaa.2019093 |
[19] |
Yoshiaki Muroya. A Lotka-Volterra system with patch structure (related to a multi-group SI epidemic model). Discrete and Continuous Dynamical Systems - S, 2015, 8 (5) : 999-1008. doi: 10.3934/dcdss.2015.8.999 |
[20] |
Yuzo Hosono. Traveling waves for the Lotka-Volterra predator-prey system without diffusion of the predator. Discrete and Continuous Dynamical Systems - B, 2015, 20 (1) : 161-171. doi: 10.3934/dcdsb.2015.20.161 |
2020 Impact Factor: 2.425
Tools
Metrics
Other articles
by authors
[Back to Top]