Citation: |
[1] |
G. Barrenechea, V. John and P. Knobloch, A nonlinear local projection stabilization for convection-diffusion-reaction equations, in Numerical Mathematics and Advanced Applications 2011, Proceedings of ENUMATH 2011 (eds. A. Cangiani, R. Davidchack, E. Georgoulis, A. Gorban, J. Levesley and M. Tretyakov), Springer-Verlag, Berlin, 2013, 237-245.doi: 10.1007/978-3-642-33134-3_26. |
[2] |
S. Ganesan and L. Tobiska, Stabilization by local projection for convection-diffusion and incompressible flow problems, J. Sci. Comput., 43 (2010), 326-342.doi: 10.1007/s10915-008-9259-8. |
[3] |
V. John and P. Knobloch, On spurious oscillations at layers diminishing (SOLD) methods for convection-diffusion equations: Part I - A review, Comput. Methods Appl. Mech. Engrg., 196 (2007), 2197-2215.doi: 10.1016/j.cma.2006.11.013. |
[4] |
P. Knobloch, A generalization of the local projection stabilization for convection-diffusion-reaction equations, SIAM J. Numer. Anal., 48 (2010), 659-680.doi: 10.1137/090767807. |
[5] |
P. Knobloch, Local projection method for convection-diffusion-reaction problems with projection spaces defined on overlapping sets, in Numerical Mathematics and Advanced Applications 2009, Proceedings of ENUMATH 2009 (eds. G. Kreiss, P. Lötstedt, A. Målqvist and M. Neytcheva), Springer-Verlag, Berlin, 2010, 497-505.doi: 10.1007/978-3-642-11795-4_53. |
[6] |
G. Matthies, P. Skrzypacz and L. Tobiska, A unified convergence analysis for local projection stabilizations applied to the Oseen problem, M2AN Math. Model. Numer. Anal., 41 (2007), 713-742.doi: 10.1051/m2an:2007038. |
[7] |
H.-G. Roos, M. Stynes and L. Tobiska, Robust Numerical Methods for Singularly Perturbed Differential Equations. Convection-Diffusion-Reaction and Flow Problems. 2nd ed., Springer-Verlag, Berlin, 2008. |