\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Multiphase volume-preserving interface motions via localized signed distance vector scheme

Abstract Related Papers Cited by
  • We develop a signed distance vector approach for approximating volume-preserving mean curvature motions of interfaces separating multiple phases -- a variant of the BMO (Bence-Merriman-Osher) thresholding dynamics. We adopt a variational method employing the idea of a vector-type discrete Morse flow, which allows us to easily treat volume constraint via penalization without having to change the threshold value. Moreover, employing a vector-valued analogue of the signed distance function, the scheme is designed to allow subgrid accuracy on uniform grids without adaptive refinement; thereby, alleviating the well-known BMO time and grid restrictions. Finally, we present numerical tests and examples.
    Mathematics Subject Classification: Primary: 53C44, 76T30; Secondary: 35K55.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    N. Aguilera, H. W. Alt and L. A. Caffarelli, An optimization problem with volume constraint, SIAM J. Control and Optimization, 24 (1986), 191-198.doi: 10.1137/0324011.

    [2]

    H. W. Alt, L. A. Caffarelli and A. Friedman, Variational prrblems with two phases and their free boundaries, Trans. Amer. Math. Soc., 282 (1984), 431-461.doi: 10.1090/S0002-9947-1984-0732100-6.

    [3]

    J. W. Barrett, H. Garcke and R. Nürnberg, Parametric approximation of willmore flow and related geometric evolution equations, SIAM J. Sci. Comput., 31 (2008), 225-253.doi: 10.1137/070700231.

    [4]

    G. Barles and C. Georgelin, A simple proof of convergence of an approximation scheme for computing motions by mean curvature, SIAM J. Numer. Anal., 32 (1995), 484-500.doi: 10.1137/0732020.

    [5]

    I. C. Dolcetta, S. F. Vita and R. March, Area preserving curve shortening flows: From phase separation to image processing, Interfaces and Free Boundaries, 4 (2002), 325-343.doi: 10.4171/IFB/64.

    [6]

    M. Elsey, S. Esedoglu and P. Smereka, Diffusion generated motion for grain growth in two and three dimensions, J. Comp. Physics, 228 (2009), 8015-8033.doi: 10.1016/j.jcp.2009.07.020.

    [7]

    S. Esedoglu, S. Ruuth and R. Tsai, Diffusion-generated motion using signed distance functions, J. Comp. Physics, 229 (2010), 1017-1042.doi: 10.1016/j.jcp.2009.10.002.

    [8]

    L. Evans, Convergence of an algorithm for mean curvature motion, Indiana University Mathematics Journal, 42 (1993), 533-557.doi: 10.1512/iumj.1993.42.42024.

    [9]

    M. Gage, Curve shortening makes convex curves circular, Invent. Math., 76 (1984), 357-364.doi: 10.1007/BF01388602.

    [10]

    E. Ginder, S. Omata and K. Švadlenka, A variational method for diffusion-generated area-preserving interface motion, Theoretical and Applied Mechanics Japan, 60 (2011), 265-270.

    [11]

    E. Ginder, A Variational Approach to Volume-Controlled Evolutionary Equations, PhD Thesis, 2013.

    [12]

    J. Hass, M. Hutchings and R. Schlafly, The double bubble conjecture, Electron. Res. Announc. Amer. Math. Soc., 1 (1995), 98-102.doi: 10.1090/S1079-6762-95-03001-0.

    [13]

    K. Ishii, Mathematical analysis to an approximation scheme for mean curvature flow, in International Symposium on Computational Science 2011 (eds. S. Omata and K. Svadlenka), Mathematical Sciences and Applications, GAKUTO International Series, 34 (2011), 67-85.

    [14]

    B. Merriman, J. Bence and S. Osher, Motion of multiple junctions: A level set approach, J. Comp. Physics, 112 (1994), 334-363.doi: 10.1006/jcph.1994.1105.

    [15]

    R. Z. Mohammad and K. Švadlenka, On a penalization method for an evolutionary free boundary problem with volume constraint, Adv. Math. Sci. Appl., 24 (2014), 85-101.

    [16]

    E. Rothe, Zweidimensionale parabolische Randwertaufgaben als Grenzfall eindimensionaler Randwertaufgaben, Math. Ann., 102 (1930), 650-670.doi: 10.1007/BF01782368.

    [17]

    S. Ruuth and B. Wetton, A simple scheme for volume-preserving motion by mean curvature, J. Scientific Computing, 19 (2003), 373-384.doi: 10.1023/A:1025368328471.

    [18]

    K. Švadlenka, E. Ginder and S. Omata, A variational method for multiphase area-preserving interface motions, J. Comp. Appl. Math, 257 (2014), 157-179.doi: 10.1016/j.cam.2013.08.027.

    [19]

    P. Tilli, On a constrained variational problem with an arbitrary number of free boundaries, Interfaces Free Bound, 2 (2000), 201-212.doi: 10.4171/IFB/18.

    [20]

    H.-K. Zhao, B. Merriman, S. Osher and L. Wang, Capturing the behavior of bubbles and drops using the variational level set approach, J. Comp. Phys., 143 (1998), 495-518.doi: 10.1006/jcph.1997.5810.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(210) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return