Citation: |
[1] |
P. Antonelli and P. Marcati, On the finite energy weak solutions to a system in quantum fluid dynamics, Comm. Math. Phys., 287 (2009), 657-686.doi: 10.1007/s00220-008-0632-0. |
[2] |
P. Antonelli and P. Marcati, The Quantum Hydrodynamics system in two space dimensions, Archive for Rational Mechanics and Analysis, 203 (2012), 499-527.doi: 10.1007/s00205-011-0454-7. |
[3] |
P. Antonelli, R. Carles and C. Sparber, On nonlinear Schrödinger type equations with nonlinear damping, Int. Math. Res. Notices, 2015 (2015), 740-762.doi: 10.1093/imrn/rnt217. |
[4] |
G. Baccarani and M. Wordeman, An investignation of steady state velocity overshoot effects in Si and GaAs devices, Solid State Electron., ED-29 (1982), 970-977. |
[5] |
N. Berloff, Quantum vortices, travelling coherent structures and superfluid turbulence, in Stationary and Time Dependent Gross-Pitaevskii Equations (eds. A. Farina and J.-C. Saut), Contemp. Math., 473, AMS, 2006. |
[6] |
Y. Brenier, Polar factorization and monotone rearrangement of vector-valued function, Comm. Pure Appl. Math., 44 (1991), 375-417.doi: 10.1002/cpa.3160440402. |
[7] |
T. Cazenave, Semilinear Schödinger Equations, Courant Lecture Notes in Mathematics, vol. 10, New York University, Courant Institute of Mathematical Sciences, AMS, 2003. |
[8] |
P. Constantin and J.-C. Saut, Local smoothing properties of dispsersive equations, J. Amer. Math. Soc., 1 (1988), 413-439.doi: 10.1090/S0894-0347-1988-0928265-0. |
[9] |
F. Dalfovo, S. Giorgini, L. Pitaevskii and S. Stringari, Theory of Bose-Einstein condensation in trapped gases, Rev. Mod. Phys., 71 (1999), 463-512.doi: 10.1103/RevModPhys.71.463. |
[10] |
D. Donatelli, E. Feireisl and P. Marcati, Well/ill posedness for the Euler-Korteweg-Poisson system and related problems, Comm. PDEs, 40 (2015), 1314-1335.doi: 10.1080/03605302.2014.972517. |
[11] |
H. Federer and W. P. Ziemer, The Lebesgue set of a function whose distribution derivatives are $p^{th}$ power summable, Indiana Univ. Math. J., 22 (1972), 139-158.doi: 10.1512/iumj.1973.22.22013. |
[12] |
R. Feynman, Superfluidity and Superconductivity, Rev. Mod. Phys., 29 (1957), p205.doi: 10.1103/RevModPhys.29.205. |
[13] |
C. Gardner, The quantum hydrodynamic model for semincoductor devices, SIAM J. Appl. Math., 54 (1994), 409-427.doi: 10.1137/S0036139992240425. |
[14] |
J. Ginibre and G. Velo, The global Cauchy problem for the nonlinear Schrödinger equations rivisited, Ann. Inst. H. Poincaré Anal. Non Lin., 2 (1985), 309-327. |
[15] |
A. Griffin, T. Nikuni and E. Zaremba, Bose-Condensed Gases at Finite Temperatures, Cambridge University Press, 2009.doi: 10.1017/CBO9780511575150. |
[16] |
A. Jüngel, Dissipative quantum fluid models, Riv. Mat. Univ. Parma, 3 (2012), 217-290. |
[17] |
A. Jüngel, M. Mariani and D. Rial, Local existence of solutions to the transient quantum hydrodynamics equations, Math. Models Methods Appl. Sci., 12 (2002), 485-495.doi: 10.1142/S0218202502001751. |
[18] |
M. Keel and T. Tao, Enpoint Strichartz estimates, Amer. J. Math., 120 (1998), 955-980.doi: 10.1353/ajm.1998.0039. |
[19] |
M. Kostin, On the Schrödinger-Langevin equation, J. Chem. Phys., 57 (1972), 3589-3591. |
[20] |
L. Landau, Theory of the superfluidity of helium II, Phys. Rev., 60 (1941), p356. |
[21] |
H. L. Li and P. Marcati, Existence and asymptotic behavior of multi-dimensional quanntum hydrodynamic model for semiconductors, Comm. Math. Phys., 245 (2004), 215-247.doi: 10.1007/s00220-003-1001-7. |
[22] |
F. Linares and G. Ponce, Introduction to Nonlinear Dispersive Equations, Springer-Verlag, New York, 2009. |
[23] |
E. Madelung, Quantuentheorie in hydrodynamischer form, Z. Physik, 40 (1927), p322. |
[24] |
P. Marcati, P. Markowich and R. Natalini, Mathematical Problems in Semiconductor Physics, Pitman Res. Notices in Math. Series, 1996. |
[25] |
P. Markowich, C. Ringhofer and C. Schmeiser, Semiconductor Equations, Springer-Verlag, New York, 1990.doi: 10.1007/978-3-7091-6961-2. |
[26] |
J. M. Rakotoson and R. Temam, An optimal compactness theorem and application to elliptic-parabolic systems, Appl. Math. Letters, 14 (2001), 303-306.doi: 10.1016/S0893-9659(00)00153-1. |
[27] |
T. Tao, Nonlinear Dispersive Equations: Local and Global Analysis, CBMS Regional Conference Series in Mathematics, vol. 106, AMS, 2006. |
[28] |
M. Tsubota, Quantized vortices in superfluid helium and Bose-Einstein condensates, J. Phys.: Conf. Ser., 31 (2006), 88-94.doi: 10.1088/1742-6596/31/1/014. |
[29] |
E. Zaremba, T. Nikuni and A. Griffin, Dynamics of trapped Bose gases at finite temperatures, J. Low Temp. Phys., 116 (1999), 277-345. |