Citation: |
[1] |
D. Amadori and A. Corli, On a model of multiphase flow, SIAM J. Math. Anal., 40 (2008), 134-166.doi: 10.1137/07069211X. |
[2] |
D. Amadori and A. Corli, Global existence of BV solutions and relaxation limit for a model of multiphase reactive flow, Nonlinear Anal., 72 (2010), 2527-2541.doi: 10.1016/j.na.2009.10.048. |
[3] |
D. Amadori and G. Guerra, Global BV solutions and relaxation limit for a system of conservation laws, Proc. Roy. Soc. Edinburgh Sect. A, 131 (2001), 1-26.doi: 10.1017/S0308210500000767. |
[4] |
F. Asakura, Decay of solutions for the equations of isothermal gas dynamics, Japan J. Indust. Appl. Math., 10 (1993), 133-164.doi: 10.1007/BF03167207. |
[5] |
F. Asakura, Wave-front tracking for the equations of isentropic gas dynamics, Quart. Appl. Math., 63 (2005), 20-33.doi: 10.1090/S0033-569X-04-00935-8. |
[6] |
F. Asakura, Wave-front tracking for the equations of non-isentropic gas dynamics-basic lemmas, Acta Math. Vietnam., 38 (2013), 487-516.doi: 10.1007/s40306-013-0030-3. |
[7] |
F. Asakura and A. Corli, Global existence of solutions by path decomposition for a model of multiphase flow, Quart. Appl. Math., 71 (2013), 135-182.doi: 10.1090/S0033-569X-2012-01318-4. |
[8] |
F. Asakura and A. Corli, Wave-front tracking for the equations of non-isentropic gas dynamics, Ann. Mat. Pura Appl., 194 (2015), 581-618.doi: 10.1007/s10231-013-0390-2. |
[9] |
A. Bressan, Global solutions of systems of conservation laws by wave-front tracking, J. Math. Anal. Appl., 170 (1992), 414-432.doi: 10.1016/0022-247X(92)90027-B. |
[10] |
A. Bressan, The unique limit of the Glimm scheme, Arch. Rational Mech. Anal., 130 (1995), 205-230.doi: 10.1007/BF00392027. |
[11] |
A. Bressan, Hyperbolic Systems of Conservation Laws. The One-Dimensional Cauchy Problem, Oxford University Press, 2000. |
[12] |
C. M. Dafermos, Hyperbolic Conservation Laws in Continuum Physics, Third edition, Springer-Verlag, Berlin, 2010.doi: 10.1007/978-3-642-04048-1. |
[13] |
R. J. DiPerna, Global existence of solutions to nonlinear hyperbolic systems of conservation laws, J. Differential Equations, 20 (1976), 187-212.doi: 10.1016/0022-0396(76)90102-9. |
[14] |
J. Glimm, Solutions in the large for nonlinear hyperbolic systems of equations, Comm. Pure Appl. Math., 18 (1965), 697-715.doi: 10.1002/cpa.3160180408. |
[15] |
S. K. Godunov, A difference method for numerical calculation of discontinuous solutions of the equations of hydrodynamics, Mat. Sb. (N.S.), 47 (1959), 271-306. |
[16] |
P. Lax, Shock waves and entropy, in Contributions to Nonlinear Functional Analysis (Proc. Sympos., Math. Res. Center, Univ. Wisconsin, Madison, Wis., 1971), Academic Press, New York, 1971, 603-634. |
[17] |
P. D. Lax, Hyperbolic systems of conservation laws. II, Comm. Pure Appl. Math., 10 (1957), 537-566.doi: 10.1002/cpa.3160100406. |
[18] |
T. P. Liu, The deterministic version of the Glimm scheme, Comm. Math. Phys., 57 (1977), 135-148.doi: 10.1007/BF01625772. |
[19] |
T. P. Liu, Initial-boundary value problems for gas dynamics, Arch. Rational Mech. Anal., 64 (1977), 137-168.doi: 10.1007/BF00280095. |
[20] |
T. P. Liu, Solutions in the large for the equations of nonisentropic gas dynamics, Indiana Univ. Math. J., 26 (1977), 147-177.doi: 10.1512/iumj.1977.26.26011. |
[21] |
T. Nishida, Global solution for an initial boundary value problem of a quasilinear hyperbolic system, Proc. Japan Acad., 44 (1968), 642-646.doi: 10.3792/pja/1195521083. |
[22] |
T. Nishida and J. A. Smoller, Solutions in the large for some nonlinear hyperbolic conservation laws, Comm. Pure Appl. Math., 26 (1973), 183-200.doi: 10.1002/cpa.3160260205. |
[23] |
N. H. Risebro, A front-tracking alternative to the random choice method, Proc. Amer. Math. Soc., 117 (1993), 1125-1139.doi: 10.1090/S0002-9939-1993-1120511-X. |
[24] |
J. B. Temple, Solutions in the large for the nonlinear hyperbolic conservation laws of gas dynamics, J. Differential Equations, 41 (1981), 96-161.doi: 10.1016/0022-0396(81)90055-3. |
[25] |
B. Temple and R. Young, The large time stability of sound waves, Comm. Math. Phys., 179 (1996), 417-466.doi: 10.1007/BF02102596. |
[26] |
R. Young, Sup-norm stability for Glimm's scheme, Comm. Pure Appl. Math., 46 (1993), 903-948.doi: 10.1002/cpa.3160460605. |