February  2016, 9(1): 15-32. doi: 10.3934/dcdss.2016.9.15

The path decomposition technique for systems of hyperbolic conservation laws

1. 

Department of Engineering Science, Osaka Electro-Communication University, 18-8 Hatucho, Neyagawa, Osaka 572-8530, Japan

2. 

Department of Mathematics and Computer Science, University of Ferrara, Via Machiavelli 30, 44121 Ferrara, Italy

Received  September 2014 Revised  February 2015 Published  December 2015

We are concerned with the problem of the global (in time) existence of weak solutions to hyperbolic systems of conservation laws, in one spatial dimension. First, we provide a survey of the different facets of a technique that has been used in several papers in the last years: the path decomposition. Then, we report on two very recent results that have been achieved by means of suitable applications of this technique. The first one concerns a system of three equations arising in the dynamic modeling of phase transitions, the second one is the famous Euler system for nonisentropic fluid flow. In both cases, the results concern classes of initial data with possibly large total variation.
Citation: Fumioki Asakura, Andrea Corli. The path decomposition technique for systems of hyperbolic conservation laws. Discrete and Continuous Dynamical Systems - S, 2016, 9 (1) : 15-32. doi: 10.3934/dcdss.2016.9.15
References:
[1]

D. Amadori and A. Corli, On a model of multiphase flow, SIAM J. Math. Anal., 40 (2008), 134-166. doi: 10.1137/07069211X.

[2]

D. Amadori and A. Corli, Global existence of BV solutions and relaxation limit for a model of multiphase reactive flow, Nonlinear Anal., 72 (2010), 2527-2541. doi: 10.1016/j.na.2009.10.048.

[3]

D. Amadori and G. Guerra, Global BV solutions and relaxation limit for a system of conservation laws, Proc. Roy. Soc. Edinburgh Sect. A, 131 (2001), 1-26. doi: 10.1017/S0308210500000767.

[4]

F. Asakura, Decay of solutions for the equations of isothermal gas dynamics, Japan J. Indust. Appl. Math., 10 (1993), 133-164. doi: 10.1007/BF03167207.

[5]

F. Asakura, Wave-front tracking for the equations of isentropic gas dynamics, Quart. Appl. Math., 63 (2005), 20-33. doi: 10.1090/S0033-569X-04-00935-8.

[6]

F. Asakura, Wave-front tracking for the equations of non-isentropic gas dynamics-basic lemmas, Acta Math. Vietnam., 38 (2013), 487-516. doi: 10.1007/s40306-013-0030-3.

[7]

F. Asakura and A. Corli, Global existence of solutions by path decomposition for a model of multiphase flow, Quart. Appl. Math., 71 (2013), 135-182. doi: 10.1090/S0033-569X-2012-01318-4.

[8]

F. Asakura and A. Corli, Wave-front tracking for the equations of non-isentropic gas dynamics, Ann. Mat. Pura Appl., 194 (2015), 581-618. doi: 10.1007/s10231-013-0390-2.

[9]

A. Bressan, Global solutions of systems of conservation laws by wave-front tracking, J. Math. Anal. Appl., 170 (1992), 414-432. doi: 10.1016/0022-247X(92)90027-B.

[10]

A. Bressan, The unique limit of the Glimm scheme, Arch. Rational Mech. Anal., 130 (1995), 205-230. doi: 10.1007/BF00392027.

[11]

A. Bressan, Hyperbolic Systems of Conservation Laws. The One-Dimensional Cauchy Problem, Oxford University Press, 2000.

[12]

C. M. Dafermos, Hyperbolic Conservation Laws in Continuum Physics, Third edition, Springer-Verlag, Berlin, 2010. doi: 10.1007/978-3-642-04048-1.

[13]

R. J. DiPerna, Global existence of solutions to nonlinear hyperbolic systems of conservation laws, J. Differential Equations, 20 (1976), 187-212. doi: 10.1016/0022-0396(76)90102-9.

[14]

J. Glimm, Solutions in the large for nonlinear hyperbolic systems of equations, Comm. Pure Appl. Math., 18 (1965), 697-715. doi: 10.1002/cpa.3160180408.

[15]

S. K. Godunov, A difference method for numerical calculation of discontinuous solutions of the equations of hydrodynamics, Mat. Sb. (N.S.), 47 (1959), 271-306.

[16]

P. Lax, Shock waves and entropy, in Contributions to Nonlinear Functional Analysis (Proc. Sympos., Math. Res. Center, Univ. Wisconsin, Madison, Wis., 1971), Academic Press, New York, 1971, 603-634.

[17]

P. D. Lax, Hyperbolic systems of conservation laws. II, Comm. Pure Appl. Math., 10 (1957), 537-566. doi: 10.1002/cpa.3160100406.

[18]

T. P. Liu, The deterministic version of the Glimm scheme, Comm. Math. Phys., 57 (1977), 135-148. doi: 10.1007/BF01625772.

[19]

T. P. Liu, Initial-boundary value problems for gas dynamics, Arch. Rational Mech. Anal., 64 (1977), 137-168. doi: 10.1007/BF00280095.

[20]

T. P. Liu, Solutions in the large for the equations of nonisentropic gas dynamics, Indiana Univ. Math. J., 26 (1977), 147-177. doi: 10.1512/iumj.1977.26.26011.

[21]

T. Nishida, Global solution for an initial boundary value problem of a quasilinear hyperbolic system, Proc. Japan Acad., 44 (1968), 642-646. doi: 10.3792/pja/1195521083.

[22]

T. Nishida and J. A. Smoller, Solutions in the large for some nonlinear hyperbolic conservation laws, Comm. Pure Appl. Math., 26 (1973), 183-200. doi: 10.1002/cpa.3160260205.

[23]

N. H. Risebro, A front-tracking alternative to the random choice method, Proc. Amer. Math. Soc., 117 (1993), 1125-1139. doi: 10.1090/S0002-9939-1993-1120511-X.

[24]

J. B. Temple, Solutions in the large for the nonlinear hyperbolic conservation laws of gas dynamics, J. Differential Equations, 41 (1981), 96-161. doi: 10.1016/0022-0396(81)90055-3.

[25]

B. Temple and R. Young, The large time stability of sound waves, Comm. Math. Phys., 179 (1996), 417-466. doi: 10.1007/BF02102596.

[26]

R. Young, Sup-norm stability for Glimm's scheme, Comm. Pure Appl. Math., 46 (1993), 903-948. doi: 10.1002/cpa.3160460605.

show all references

References:
[1]

D. Amadori and A. Corli, On a model of multiphase flow, SIAM J. Math. Anal., 40 (2008), 134-166. doi: 10.1137/07069211X.

[2]

D. Amadori and A. Corli, Global existence of BV solutions and relaxation limit for a model of multiphase reactive flow, Nonlinear Anal., 72 (2010), 2527-2541. doi: 10.1016/j.na.2009.10.048.

[3]

D. Amadori and G. Guerra, Global BV solutions and relaxation limit for a system of conservation laws, Proc. Roy. Soc. Edinburgh Sect. A, 131 (2001), 1-26. doi: 10.1017/S0308210500000767.

[4]

F. Asakura, Decay of solutions for the equations of isothermal gas dynamics, Japan J. Indust. Appl. Math., 10 (1993), 133-164. doi: 10.1007/BF03167207.

[5]

F. Asakura, Wave-front tracking for the equations of isentropic gas dynamics, Quart. Appl. Math., 63 (2005), 20-33. doi: 10.1090/S0033-569X-04-00935-8.

[6]

F. Asakura, Wave-front tracking for the equations of non-isentropic gas dynamics-basic lemmas, Acta Math. Vietnam., 38 (2013), 487-516. doi: 10.1007/s40306-013-0030-3.

[7]

F. Asakura and A. Corli, Global existence of solutions by path decomposition for a model of multiphase flow, Quart. Appl. Math., 71 (2013), 135-182. doi: 10.1090/S0033-569X-2012-01318-4.

[8]

F. Asakura and A. Corli, Wave-front tracking for the equations of non-isentropic gas dynamics, Ann. Mat. Pura Appl., 194 (2015), 581-618. doi: 10.1007/s10231-013-0390-2.

[9]

A. Bressan, Global solutions of systems of conservation laws by wave-front tracking, J. Math. Anal. Appl., 170 (1992), 414-432. doi: 10.1016/0022-247X(92)90027-B.

[10]

A. Bressan, The unique limit of the Glimm scheme, Arch. Rational Mech. Anal., 130 (1995), 205-230. doi: 10.1007/BF00392027.

[11]

A. Bressan, Hyperbolic Systems of Conservation Laws. The One-Dimensional Cauchy Problem, Oxford University Press, 2000.

[12]

C. M. Dafermos, Hyperbolic Conservation Laws in Continuum Physics, Third edition, Springer-Verlag, Berlin, 2010. doi: 10.1007/978-3-642-04048-1.

[13]

R. J. DiPerna, Global existence of solutions to nonlinear hyperbolic systems of conservation laws, J. Differential Equations, 20 (1976), 187-212. doi: 10.1016/0022-0396(76)90102-9.

[14]

J. Glimm, Solutions in the large for nonlinear hyperbolic systems of equations, Comm. Pure Appl. Math., 18 (1965), 697-715. doi: 10.1002/cpa.3160180408.

[15]

S. K. Godunov, A difference method for numerical calculation of discontinuous solutions of the equations of hydrodynamics, Mat. Sb. (N.S.), 47 (1959), 271-306.

[16]

P. Lax, Shock waves and entropy, in Contributions to Nonlinear Functional Analysis (Proc. Sympos., Math. Res. Center, Univ. Wisconsin, Madison, Wis., 1971), Academic Press, New York, 1971, 603-634.

[17]

P. D. Lax, Hyperbolic systems of conservation laws. II, Comm. Pure Appl. Math., 10 (1957), 537-566. doi: 10.1002/cpa.3160100406.

[18]

T. P. Liu, The deterministic version of the Glimm scheme, Comm. Math. Phys., 57 (1977), 135-148. doi: 10.1007/BF01625772.

[19]

T. P. Liu, Initial-boundary value problems for gas dynamics, Arch. Rational Mech. Anal., 64 (1977), 137-168. doi: 10.1007/BF00280095.

[20]

T. P. Liu, Solutions in the large for the equations of nonisentropic gas dynamics, Indiana Univ. Math. J., 26 (1977), 147-177. doi: 10.1512/iumj.1977.26.26011.

[21]

T. Nishida, Global solution for an initial boundary value problem of a quasilinear hyperbolic system, Proc. Japan Acad., 44 (1968), 642-646. doi: 10.3792/pja/1195521083.

[22]

T. Nishida and J. A. Smoller, Solutions in the large for some nonlinear hyperbolic conservation laws, Comm. Pure Appl. Math., 26 (1973), 183-200. doi: 10.1002/cpa.3160260205.

[23]

N. H. Risebro, A front-tracking alternative to the random choice method, Proc. Amer. Math. Soc., 117 (1993), 1125-1139. doi: 10.1090/S0002-9939-1993-1120511-X.

[24]

J. B. Temple, Solutions in the large for the nonlinear hyperbolic conservation laws of gas dynamics, J. Differential Equations, 41 (1981), 96-161. doi: 10.1016/0022-0396(81)90055-3.

[25]

B. Temple and R. Young, The large time stability of sound waves, Comm. Math. Phys., 179 (1996), 417-466. doi: 10.1007/BF02102596.

[26]

R. Young, Sup-norm stability for Glimm's scheme, Comm. Pure Appl. Math., 46 (1993), 903-948. doi: 10.1002/cpa.3160460605.

[1]

Gui-Qiang Chen, Monica Torres. On the structure of solutions of nonlinear hyperbolic systems of conservation laws. Communications on Pure and Applied Analysis, 2011, 10 (4) : 1011-1036. doi: 10.3934/cpaa.2011.10.1011

[2]

Tatsien Li, Libin Wang. Global exact shock reconstruction for quasilinear hyperbolic systems of conservation laws. Discrete and Continuous Dynamical Systems, 2006, 15 (2) : 597-609. doi: 10.3934/dcds.2006.15.597

[3]

Tai-Ping Liu, Shih-Hsien Yu. Hyperbolic conservation laws and dynamic systems. Discrete and Continuous Dynamical Systems, 2000, 6 (1) : 143-145. doi: 10.3934/dcds.2000.6.143

[4]

K. T. Joseph, Philippe G. LeFloch. Boundary layers in weak solutions of hyperbolic conservation laws II. self-similar vanishing diffusion limits. Communications on Pure and Applied Analysis, 2002, 1 (1) : 51-76. doi: 10.3934/cpaa.2002.1.51

[5]

Alberto Bressan, Marta Lewicka. A uniqueness condition for hyperbolic systems of conservation laws. Discrete and Continuous Dynamical Systems, 2000, 6 (3) : 673-682. doi: 10.3934/dcds.2000.6.673

[6]

Stefano Bianchini. A note on singular limits to hyperbolic systems of conservation laws. Communications on Pure and Applied Analysis, 2003, 2 (1) : 51-64. doi: 10.3934/cpaa.2003.2.51

[7]

Weishi Liu. Multiple viscous wave fan profiles for Riemann solutions of hyperbolic systems of conservation laws. Discrete and Continuous Dynamical Systems, 2004, 10 (4) : 871-884. doi: 10.3934/dcds.2004.10.871

[8]

Mapundi K. Banda, Michael Herty. Numerical discretization of stabilization problems with boundary controls for systems of hyperbolic conservation laws. Mathematical Control and Related Fields, 2013, 3 (2) : 121-142. doi: 10.3934/mcrf.2013.3.121

[9]

Yu Zhang, Yanyan Zhang. Riemann problems for a class of coupled hyperbolic systems of conservation laws with a source term. Communications on Pure and Applied Analysis, 2019, 18 (3) : 1523-1545. doi: 10.3934/cpaa.2019073

[10]

Fuqin Sun, Mingxin Wang. Non-existence of global solutions for nonlinear strongly damped hyperbolic systems. Discrete and Continuous Dynamical Systems, 2005, 12 (5) : 949-958. doi: 10.3934/dcds.2005.12.949

[11]

Tong Li, Kun Zhao. Global existence and long-time behavior of entropy weak solutions to a quasilinear hyperbolic blood flow model. Networks and Heterogeneous Media, 2011, 6 (4) : 625-646. doi: 10.3934/nhm.2011.6.625

[12]

Xavier Litrico, Vincent Fromion, Gérard Scorletti. Robust feedforward boundary control of hyperbolic conservation laws. Networks and Heterogeneous Media, 2007, 2 (4) : 717-731. doi: 10.3934/nhm.2007.2.717

[13]

Constantine M. Dafermos. A variational approach to the Riemann problem for hyperbolic conservation laws. Discrete and Continuous Dynamical Systems, 2009, 23 (1&2) : 185-195. doi: 10.3934/dcds.2009.23.185

[14]

Paolo Baiti, Helge Kristian Jenssen. Blowup in $\mathbf{L^{\infty}}$ for a class of genuinely nonlinear hyperbolic systems of conservation laws. Discrete and Continuous Dynamical Systems, 2001, 7 (4) : 837-853. doi: 10.3934/dcds.2001.7.837

[15]

Sachiko Ishida, Tomomi Yokota. Remarks on the global existence of weak solutions to quasilinear degenerate Keller-Segel systems. Conference Publications, 2013, 2013 (special) : 345-354. doi: 10.3934/proc.2013.2013.345

[16]

Christophe Prieur. Control of systems of conservation laws with boundary errors. Networks and Heterogeneous Media, 2009, 4 (2) : 393-407. doi: 10.3934/nhm.2009.4.393

[17]

Dmitry V. Zenkov. Linear conservation laws of nonholonomic systems with symmetry. Conference Publications, 2003, 2003 (Special) : 967-976. doi: 10.3934/proc.2003.2003.967

[18]

Valérie Dos Santos, Bernhard Maschke, Yann Le Gorrec. A Hamiltonian perspective to the stabilization of systems of two conservation laws. Networks and Heterogeneous Media, 2009, 4 (2) : 249-266. doi: 10.3934/nhm.2009.4.249

[19]

Zhi-Qiang Shao. Global existence of classical solutions of Goursat problem for quasilinear hyperbolic systems of diagonal form with large BV data. Communications on Pure and Applied Analysis, 2013, 12 (6) : 2739-2752. doi: 10.3934/cpaa.2013.12.2739

[20]

C. M. Khalique, G. S. Pai. Conservation laws and invariant solutions for soil water equations. Conference Publications, 2003, 2003 (Special) : 477-481. doi: 10.3934/proc.2003.2003.477

2020 Impact Factor: 2.425

Metrics

  • PDF downloads (210)
  • HTML views (1)
  • Cited by (0)

Other articles
by authors

[Back to Top]