February  2016, 9(1): xi-xvii. doi: 10.3934/dcdss.2016.9.1xi

The research of Alberto Valli

1. 

Dipartimento di Matematica, Universita degli Studi di Trento, Via Sommarive, 14, I-38050 POVO

2. 

Department of Mathematics, Pisa University, Via F.Buonarroti, 1, 56127-Pisa

3. 

EPFL, SB, SMA, MATHICSE, CMCS, Av. Piccard, Station 8, CH-1015 Lausanne, Switzerland

Published  December 2015

The scientific activity of Professor Alberto Valli has been mainly devoted to three different subjects: theoretical analysis of partial differential equations in fluid dynamics; domain decomposition methods; numerical approximation of problems arising in low-frequency electromagnetism.

For more information please click the “Full Text” above.
Citation: Ana Alonso Rodríguez, Hugo Beirão da Veiga, Alfio Quarteroni. The research of Alberto Valli. Discrete & Continuous Dynamical Systems - S, 2016, 9 (1) : xi-xvii. doi: 10.3934/dcdss.2016.9.1xi
References:
[1]

L. Carbone and A. Valli, Filtrazione di un fluido in un mezzo non omogeneo tridimensionale, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8), 61 (1976), 161-164.  Google Scholar

[2]

A. Valli, L'equazione di Eulero dei fluidi bidimensionali in domini con frontiera variabile, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8), 61 (1976), 1-5.  Google Scholar

[3]

L. Carbone and A. Valli, Free boundary enclosure in a three-dimensional filtration problem, Appl. Math. Optim., 4 (1977), 1-14. doi: 10.1007/BF01442128.  Google Scholar

[4]

A. Valli, Soluzioni classiche dell'equazione di Eulero dei fluidi bidimensionali in domini con frontiera variabile, Ricerche Mat., 26 (1977), 301-333.  Google Scholar

[5]

L. Carbone and A. Valli, Asymptotic behaviour of the free boundary in a filtration problem, Boll. Un. Mat. Ital. B (5), 15 (1978), 217-224.  Google Scholar

[6]

L. Carbone and A. Valli, Filtration through a porous non-homogeneous medium with variable cross-section, J. Analyse Math., 33 (1978), 191-221. doi: 10.1007/BF02790173.  Google Scholar

[7]

H. Beirão da Veiga and A. Valli, On the motion of a non-homogeneous ideal incompressible fluid in an external force field, Rend. Sem. Mat. Univ. Padova, 59 (1978), 117-145.  Google Scholar

[8]

H. Beirão da Veiga and A. Valli, Existence of $C^\infty$ solutions of the Euler equations for non-homogeneous fluids, Comm. Partial Differential Equations, 5 (1980), 95-107. doi: 10.1080/03605308008820134.  Google Scholar

[9]

H. Beirão da Veiga and A. Valli, On the Euler equations for non-homogeneous fluids (I), Rend. Sem. Mat. Univ. Padova, 63 (1980), 151-168.  Google Scholar

[10]

H. Beirão da Veiga and A. Valli, On the Euler equations for non-homogeneous fluids (II), J. Math. Anal. Appl., 73 (1980), 338-350. doi: 10.1016/0022-247X(80)90282-6.  Google Scholar

[11]

A. Valli, Uniqueness theorems for compressible viscous fluids, especially when the Stokes relation holds, Boll. Un. Mat. Ital. C (5), 18 (1981), 317-325.  Google Scholar

[12]

H. Beirão da Veiga, R. Serapioni and A. Valli, On the motion of non-homogeneous fluids in the presence of diffusion, J. Math. Anal. Appl., 85 (1982), 179-191. doi: 10.1016/0022-247X(82)90033-6.  Google Scholar

[13]

A. Valli, A correction to the paper: "An existence theorem for compressible viscous fluids'', Ann. Mat. Pura Appl. (4), 132 (1982), 399-400. doi: 10.1007/BF01760990.  Google Scholar

[14]

A. Valli, An existence theorem for compressible viscous fluids, Ann. Mat. Pura Appl. (4), 130 (1982), 197-213. doi: 10.1007/BF01761495.  Google Scholar

[15]

P. Secchi and A. Valli, A free boundary problem for compressible viscous fluids, J. Reine Angew. Math., 341 (1983), 1-31. doi: 10.1515/crll.1983.341.1.  Google Scholar

[16]

A. Valli, Periodic and stationary solutions for compressible Navier-Stokes equations via a stability method, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 10 (1983), 607-647.  Google Scholar

[17]

A. Valli, Free boundary problems for compressible viscous fluids, in Fluid Dynamics (Varenna, 1982), Lecture Notes in Math., 1047, Springer, Berlin, 1984, 175-187. doi: 10.1007/BFb0072331.  Google Scholar

[18]

P. Marcati and A. Valli, Almost-periodic solutions to the Navier-Stokes equations for compressible fluids, Boll. Un. Mat. Ital. B (6), 4 (1985), 969-986.  Google Scholar

[19]

A. Valli, Global existence theorems for compressible viscous fluids, in Nonlinear Variational Problems (Isola d'Elba, 1983) (eds. A. Marino, L. Modica, S. Spagnolo and M. Degiovanni), Res. Notes in Math., 127, Pitman, Boston, MA, 1985, 120-122.  Google Scholar

[20]

A. Valli, On the integral representation of the solution to the Stokes system, Rend. Sem. Mat. Univ. Padova, 74 (1985), 85-114.  Google Scholar

[21]

A. Valli, Navier-Stokes equations for compressible fluids: Global estimates and periodic solutions, in Nonlinear Functional Analysis and its Applications, Part 2 (Berkeley, Calif., 1983) (ed. F. E. Browder), Proc. Sympos. Pure Math., 45, Part 2, Amer. Math. Soc., Providence, RI, 1986, 467-476.  Google Scholar

[22]

A. Valli, Qualitative properties of the solutions to the Navier-Stokes equations for compressible fluids, in Equadiff 6 (Brno, 1985) (eds. J. Vosmanský and M. Zlámal), Lecture Notes in Math., 1192, Springer, Berlin, 1986, 259-264. doi: 10.1007/BFb0076079.  Google Scholar

[23]

A. Valli, Stationary solutions to the Navier-Stokes equations for compressible fluids, in BAIL IV (Novosibirsk, 1986) (eds. S. K. Godunov, J. J. H. Miller and V. A. Novikov), Boole, Dún Laoghaire, 1986, 417-422.  Google Scholar

[24]

A. Valli and W. Zajączkowski, Navier-Stokes equations for compressible fluids: Global existence and qualitative properties of the solutions in the general case, Comm. Math. Phys., 103 (1986), 259-296. doi: 10.1007/BF01206939.  Google Scholar

[25]

A. Valli, On the existence of stationary solutions to compressible Navier-Stokes equations, Ann. Inst. H. Poincaré Anal. Non Linéaire, 4 (1987), 99-113.  Google Scholar

[26]

I. Straškraba and A. Valli, Asymptotic behaviour of the density for one-dimensional Navier-Stokes equations, Manuscripta Math., 62 (1988), 401-416. doi: 10.1007/BF01357718.  Google Scholar

[27]

A. Valli and W. Zajączkowski, About the motion of non-homogeneous ideal incompressible fluids, Nonlinear Anal., 12 (1988), 43-50. doi: 10.1016/0362-546X(88)90011-9.  Google Scholar

[28]

A. Valli, An existence theorem for non-homogeneous inviscid incompressible fluids, in Differential Equations (Xanthi, 1987) (eds. C. M. Dafermos, G. Ladas and G. Papanicolaou), Dekker, New York (NY), 1989, 691-698.  Google Scholar

[29]

V. Lovicar, I. Straškraba and A. Valli, On bounded solutions of one-dimensional compressible Navier-Stokes equations, Rend. Sem. Mat. Univ. Padova, 83 (1990), 81-95.  Google Scholar

[30]

A. Quarteroni and A. Valli, Domain decomposition for a generalized Stokes problem, in, Proceedings of the Third European Conference on Mathematics in Industry (Glasgow, 1988) (eds. J. Manley, S. McKee, and D. Owens), Teubner, Stuttgart, 1990, 59-74.  Google Scholar

[31]

A. Valli, On the one-dimensional Navier-Stokes equations for compressible fluids, in The Navier-Stokes Equations (Oberwolfach, 1988) (eds. J. G. Heywood, K. Masuda, R. Rautmann and V. A. Solonnikov), Springer, Berlin, 1990, 173-179. doi: 10.1007/BFb0086068.  Google Scholar

[32]

A. Quarteroni, G. Sacchi Landriani and A. Valli, Coupling of viscous and inviscid Stokes equations via a domain decomposition method for finite elements, Numer. Math., 59 (1991), 831-859. doi: 10.1007/BF01385813.  Google Scholar

[33]

A. Quarteroni and A. Valli, Theory and applications of Steklov-Poincaré for boundary value problems: the heterogeneous operator case, in Fourth International Symposium on Domain Decomposition Methods for Partial Differential Equations (Moscow, 1990) (eds. R. Glowinski, Y. A. Kuznetsov, G. Meurant, J. Périaux and O. B. Widlund), SIAM, Philadelphia (PA), 1991, 58-81.  Google Scholar

[34]

A. Quarteroni and A. Valli, Theory and applications of Steklov-Poincaré operators for boundary value problems, in Applied and Industrial Mathematics (Venice, 1989) (ed. R. Spigler), Kluwer Acad. Publ., Dordrecht, 1991, 179-203.  Google Scholar

[35]

C. Carlenzoli, A. Quarteroni and A. Valli, Spectral domain decomposition methods for compressible Navier-Stokes equations, in Fifth International Symposium on Domain Decomposition Methods for Partial Differential Equations (Norfolk, VA, 1991) (eds. D. E. Keyes, T. F. Chan, G. Meurant, J. S. Scroggs and R. G. Voigt), SIAM, Philadelphia (PA), 1992, 441-450.  Google Scholar

[36]

A. Quarteroni, F. Pasquarelli and A. Valli, Heterogeneous domain decomposition: principles, algorithms, applications, in Fifth International Symposium on Domain Decomposition Methods for Partial Differential Equations (Norfolk, {VA, 1991)} (eds. D. E. Keyes, T. F. Chan, G. Meurant, J. S. Scroggs and R. G. Voigt), SIAM, Philadelphia (PA), 1992, 129-150.  Google Scholar

[37]

A. Valli, Mathematical results for compressible flows, in Mathematical Topics in Fluid Mechanics (Lisbon, 1991) (eds. J. F. Rodrigues and A. Sequeira), Longman Sci. Tech., Harlow, 1992, 193-229.  Google Scholar

[38]

A. Quarteroni and A. Valli, Mathematical modelling and numerical approximation of fluid flow, in Methods and Techniques in Computational Chemistry: METECC-94. Volume C: Structure and Dynamics (ed. E. Clementi), STEF, Cagliari, 1993, 247-298. Google Scholar

[39]

C. Carlenzoli, A. Quarteroni and A. Valli, Numerical solution of the Navier-Stokes equations for viscous compressible flows, in Applied Mathematics in Aerospace Science and Engineering (Erice, 1991) (eds. A. Miele and A. Salvetti), Plenum, New York (NY), 1994, 81-111.  Google Scholar

[40]

A. Alonso and A. Valli, A new approach to the coupling of viscous and inviscid Stokes equations, East-West J. Numer. Math., 3 (1995), 29-41.  Google Scholar

[41]

A. Alonso and A. Valli, Some remarks on the characterization of the space of tangential traces of $H(rot;\Omega)$ and the construction of an extension operator, Manuscripta Math., 89 (1996), 159-178. doi: 10.1007/BF02567511.  Google Scholar

[42]

A. Quarteroni and A. Valli, Domain decomposition methods for partial differential equations, in 27th Computational Fluid Dynamics (ed. H. Deconinck), Von Karman Institute for Fluid Dynamics, Rhode-Saint-Genèse, 1996, 1-90. Google Scholar

[43]

A. Alonso and A. Valli, Domain decomposition algorithms for low-frequency time-harmonic Maxwell equations, in Numerical Modelling in Continuum Mechanics (Prague, 1997) (eds. M. Feistauer, R. Rannacher and K. Kozel), Matfyzpress, Prague, 1997, 3-17. Google Scholar

[44]

A. Alonso and A. Valli, A domain decomposition approach for heterogeneous time-harmonic Maxwell equations, Comput. Methods Appl. Mech. Engrg., 143 (1997), 97-112. doi: 10.1016/S0045-7825(96)01144-9.  Google Scholar

[45]

A. Alonso, R. L. Trotta and A. Valli, Coercive domain decomposition algorithms for advection-diffusion equations and systems, J. Comput. Appl. Math., 96 (1998), 51-76. doi: 10.1016/S0377-0427(98)00091-0.  Google Scholar

[46]

A. Alonso and A. Valli, Finite element approximation of heterogeneous time-harmonic Maxwell equations via a domain decomposition approach, in International Conference on Differential Equations (Lisboa, 1995) (eds. L. Magalhães, C. Rocha and L. Sanchez), World Sci. Publ., River Edge, NJ, 1998, 227-232.  Google Scholar

[47]

A. Alonso and A. Valli, Unique solvability for high-frequency heterogeneous time-harmonic Maxwell equations via Fredholm alternative theory, Math. Methods Appl. Sci., 21 (1998), 463-477. doi: 10.1002/(SICI)1099-1476(199804)21:6<463::AID-MMA947>3.0.CO;2-U.  Google Scholar

[48]

A. Alonso and A. Valli, An optimal domain decomposition preconditioner for low-frequency time-harmonic Maxwell equations, Math. Comp., 68 (1999), 607-631. doi: 10.1090/S0025-5718-99-01013-3.  Google Scholar

[49]

A. Quarteroni and A. Valli, Domain decomposition methods for compressible flows, in Error Control and Adaptivity in Scientific Computing (Antalya, 1998) (eds. H. Bulgak and C. Zenger), Kluwer Acad. Publ., Dordrecht, 1999, 221-245.  Google Scholar

[50]

A. Alonso Rodríguez and A. Valli, Domain decomposition algorithms for time-harmonic Maxwell equations with damping, M2AN Math. Model. Numer. Anal., 35 (2001), 825-848. doi: 10.1051/m2an:2001137.  Google Scholar

[51]

A. Alonso Rodríguez and A. Valli, Domain decomposition methods for time-harmonic Maxwell equations: Numerical results}, in Recent Developments in Domain Decomposition Methods (Zürich, 2001) (eds. L. F. Pavarino and A. Toselli), Springer, Berlin, 2002, 157-171. doi: 10.1007/978-3-642-56118-4_10.  Google Scholar

[52]

A. Alonso Rodríguez, P. Fernandes and A. Valli, The time-harmonic eddy-current problem in general domains: Solvability via scalar potentials, in Computational Electromagnetics (Kiel, 2001) (eds. C. Carstensen, S. Funken, W. Hackbusch, R. H. W. Hoppe and P. Monk), Springer, Berlin, 2003, 143-163. doi: 10.1007/978-3-642-55745-3_10.  Google Scholar

[53]

A. Alonso Rodríguez, P. Fernandes and A. Valli, Weak and strong formulations for the time-harmonic eddy-current problem in general multi-connected domains, European J. Appl. Math., 14 (2003), 387-406. doi: 10.1017/S0956792503005151.  Google Scholar

[54]

A. Alonso Rodríguez, R. Hiptmair and A. Valli, Mixed finite element approximation of eddy current problems, IMA J. Numer. Anal., 24 (2004), 255-271. doi: 10.1093/imanum/24.2.255.  Google Scholar

[55]

A. Alonso Rodríguez and A. Valli, Mixed finite element approximation of eddy current problems based on the electric field, in ECCOMAS 2004: European Congress on Computational Methods in Applied Sciences and Engineering (Jyväskylä, 2004) (eds. P. Neittaanmäki, T. Rossi, K. Majava and O. Pironneau), volume 1, University of Jyväskylä. Department of Mathematics, Jyväskylä, 2004, 1-12. Google Scholar

[56]

A. Alonso Rodríguez, R. Hiptmair and A. Valli, A hybrid formulation of eddy current problems, Numer. Methods Partial Differential Equations, 21 (2005), 742-763. doi: 10.1002/num.20060.  Google Scholar

[57]

A. Quarteroni, M. Sala and A. Valli, An interface-strip domain decomposition preconditioner, SIAM J. Sci. Comput., 28 (2006), 498-516. doi: 10.1137/04061057X.  Google Scholar

[58]

O. Bíró and A. Valli, The Coulomb gauged vector potential formulation for the eddy-current problem in general geometry: well-posedness and numerical approximation, Comput. Methods Appl. Mech. Engrg., 196 (2007), 1890-1904. doi: 10.1016/j.cma.2006.10.008.  Google Scholar

[59]

M. Discacciati, A. Quarteroni and A. Valli, Robin-Robin domain decomposition methods for the Stokes-Darcy coupling, SIAM J. Numer. Anal., 45 (2007), 1246-1268. doi: 10.1137/06065091X.  Google Scholar

[60]

P. Fernandes and A. Valli, Lorenz-gauged vector potential formulations for the time-harmonic eddy-current problem with $L^\infty$-regularity of material properties, Math. Methods Appl. Sci., 31 (2008), 71-98. doi: 10.1002/mma.900.  Google Scholar

[61]

A. Alonso Rodríguez and A. Valli, Voltage and current excitation for time-harmonic eddy-current problems, SIAM J. Appl. Math., 68 (2008), 1477-1494. doi: 10.1137/070697677.  Google Scholar

[62]

A. Alonso Rodríguez and A. Valli, A FEM-BEM approach for electro-magnetostatics and time-harmonic eddy-current problems, Appl. Numer. Math., 59 (2009), 2036-2049. doi: 10.1016/j.apnum.2008.12.002.  Google Scholar

[63]

A. Alonso Rodríguez, A. Valli and R. Vázquez Hernández, A formulation of the eddy current problem in the presence of electric ports, Numer. Math., 113 (2009), 643-672. doi: 10.1007/s00211-009-0241-7.  Google Scholar

[64]

A. Alonso Rodríguez, J. Camaño and A. Valli, Inverse source problems for eddy current equations, Inverse Problems, 28 (2012), 015006, 15 pp. doi: 10.1088/0266-5611/28/1/015006.  Google Scholar

[65]

A. Valli, Solving an electrostatics-like problem with a current dipole source by means of the duality method, Appl. Math. Lett., 25 (2012), 1410-1414. doi: 10.1016/j.aml.2011.12.013.  Google Scholar

[66]

A. Alonso Rodríguez, E. Bertolazzi, R. Ghiloni and A. Valli, Construction of a finite element basis of the first de Rham cohomology group and numerical solution of 3D magnetostatic problems, SIAM J. Numer. Anal., 51 (2013), 2380-2402. doi: 10.1137/120890648.  Google Scholar

[67]

A. Alonso Rodríguez, J. Camaño, R. Rodríguez and A. Valli, A posteriori error estimates for the problem of electrostatics with a dipole source, Comput. Math. Appl., 68 (2014), 464-485. doi: 10.1016/j.camwa.2014.06.017.  Google Scholar

[68]

A. Alonso Rodríguez and A. Valli, Finite element potentials, Appl. Numer. Math., 95 (2015), 2-14. doi: 10.1016/j.apnum.2014.05.014.  Google Scholar

[69]

A. Alonso Rodríguez and A. Valli, Eddy Current Approximation of Maxwell Equations, Springer Italia, Milan, 2010. doi: 10.1007/978-88-470-1506-7.  Google Scholar

[70]

A. Quarteroni and A. Valli, Domain Decomposition Methods for Partial Differential Equations, Oxford University Press, Oxford, 1999.  Google Scholar

[71]

A. Quarteroni and A. Valli, Numerical Approximation of Partial Differential Equations, Springer, Berlin, 1994.  Google Scholar

show all references

References:
[1]

L. Carbone and A. Valli, Filtrazione di un fluido in un mezzo non omogeneo tridimensionale, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8), 61 (1976), 161-164.  Google Scholar

[2]

A. Valli, L'equazione di Eulero dei fluidi bidimensionali in domini con frontiera variabile, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8), 61 (1976), 1-5.  Google Scholar

[3]

L. Carbone and A. Valli, Free boundary enclosure in a three-dimensional filtration problem, Appl. Math. Optim., 4 (1977), 1-14. doi: 10.1007/BF01442128.  Google Scholar

[4]

A. Valli, Soluzioni classiche dell'equazione di Eulero dei fluidi bidimensionali in domini con frontiera variabile, Ricerche Mat., 26 (1977), 301-333.  Google Scholar

[5]

L. Carbone and A. Valli, Asymptotic behaviour of the free boundary in a filtration problem, Boll. Un. Mat. Ital. B (5), 15 (1978), 217-224.  Google Scholar

[6]

L. Carbone and A. Valli, Filtration through a porous non-homogeneous medium with variable cross-section, J. Analyse Math., 33 (1978), 191-221. doi: 10.1007/BF02790173.  Google Scholar

[7]

H. Beirão da Veiga and A. Valli, On the motion of a non-homogeneous ideal incompressible fluid in an external force field, Rend. Sem. Mat. Univ. Padova, 59 (1978), 117-145.  Google Scholar

[8]

H. Beirão da Veiga and A. Valli, Existence of $C^\infty$ solutions of the Euler equations for non-homogeneous fluids, Comm. Partial Differential Equations, 5 (1980), 95-107. doi: 10.1080/03605308008820134.  Google Scholar

[9]

H. Beirão da Veiga and A. Valli, On the Euler equations for non-homogeneous fluids (I), Rend. Sem. Mat. Univ. Padova, 63 (1980), 151-168.  Google Scholar

[10]

H. Beirão da Veiga and A. Valli, On the Euler equations for non-homogeneous fluids (II), J. Math. Anal. Appl., 73 (1980), 338-350. doi: 10.1016/0022-247X(80)90282-6.  Google Scholar

[11]

A. Valli, Uniqueness theorems for compressible viscous fluids, especially when the Stokes relation holds, Boll. Un. Mat. Ital. C (5), 18 (1981), 317-325.  Google Scholar

[12]

H. Beirão da Veiga, R. Serapioni and A. Valli, On the motion of non-homogeneous fluids in the presence of diffusion, J. Math. Anal. Appl., 85 (1982), 179-191. doi: 10.1016/0022-247X(82)90033-6.  Google Scholar

[13]

A. Valli, A correction to the paper: "An existence theorem for compressible viscous fluids'', Ann. Mat. Pura Appl. (4), 132 (1982), 399-400. doi: 10.1007/BF01760990.  Google Scholar

[14]

A. Valli, An existence theorem for compressible viscous fluids, Ann. Mat. Pura Appl. (4), 130 (1982), 197-213. doi: 10.1007/BF01761495.  Google Scholar

[15]

P. Secchi and A. Valli, A free boundary problem for compressible viscous fluids, J. Reine Angew. Math., 341 (1983), 1-31. doi: 10.1515/crll.1983.341.1.  Google Scholar

[16]

A. Valli, Periodic and stationary solutions for compressible Navier-Stokes equations via a stability method, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 10 (1983), 607-647.  Google Scholar

[17]

A. Valli, Free boundary problems for compressible viscous fluids, in Fluid Dynamics (Varenna, 1982), Lecture Notes in Math., 1047, Springer, Berlin, 1984, 175-187. doi: 10.1007/BFb0072331.  Google Scholar

[18]

P. Marcati and A. Valli, Almost-periodic solutions to the Navier-Stokes equations for compressible fluids, Boll. Un. Mat. Ital. B (6), 4 (1985), 969-986.  Google Scholar

[19]

A. Valli, Global existence theorems for compressible viscous fluids, in Nonlinear Variational Problems (Isola d'Elba, 1983) (eds. A. Marino, L. Modica, S. Spagnolo and M. Degiovanni), Res. Notes in Math., 127, Pitman, Boston, MA, 1985, 120-122.  Google Scholar

[20]

A. Valli, On the integral representation of the solution to the Stokes system, Rend. Sem. Mat. Univ. Padova, 74 (1985), 85-114.  Google Scholar

[21]

A. Valli, Navier-Stokes equations for compressible fluids: Global estimates and periodic solutions, in Nonlinear Functional Analysis and its Applications, Part 2 (Berkeley, Calif., 1983) (ed. F. E. Browder), Proc. Sympos. Pure Math., 45, Part 2, Amer. Math. Soc., Providence, RI, 1986, 467-476.  Google Scholar

[22]

A. Valli, Qualitative properties of the solutions to the Navier-Stokes equations for compressible fluids, in Equadiff 6 (Brno, 1985) (eds. J. Vosmanský and M. Zlámal), Lecture Notes in Math., 1192, Springer, Berlin, 1986, 259-264. doi: 10.1007/BFb0076079.  Google Scholar

[23]

A. Valli, Stationary solutions to the Navier-Stokes equations for compressible fluids, in BAIL IV (Novosibirsk, 1986) (eds. S. K. Godunov, J. J. H. Miller and V. A. Novikov), Boole, Dún Laoghaire, 1986, 417-422.  Google Scholar

[24]

A. Valli and W. Zajączkowski, Navier-Stokes equations for compressible fluids: Global existence and qualitative properties of the solutions in the general case, Comm. Math. Phys., 103 (1986), 259-296. doi: 10.1007/BF01206939.  Google Scholar

[25]

A. Valli, On the existence of stationary solutions to compressible Navier-Stokes equations, Ann. Inst. H. Poincaré Anal. Non Linéaire, 4 (1987), 99-113.  Google Scholar

[26]

I. Straškraba and A. Valli, Asymptotic behaviour of the density for one-dimensional Navier-Stokes equations, Manuscripta Math., 62 (1988), 401-416. doi: 10.1007/BF01357718.  Google Scholar

[27]

A. Valli and W. Zajączkowski, About the motion of non-homogeneous ideal incompressible fluids, Nonlinear Anal., 12 (1988), 43-50. doi: 10.1016/0362-546X(88)90011-9.  Google Scholar

[28]

A. Valli, An existence theorem for non-homogeneous inviscid incompressible fluids, in Differential Equations (Xanthi, 1987) (eds. C. M. Dafermos, G. Ladas and G. Papanicolaou), Dekker, New York (NY), 1989, 691-698.  Google Scholar

[29]

V. Lovicar, I. Straškraba and A. Valli, On bounded solutions of one-dimensional compressible Navier-Stokes equations, Rend. Sem. Mat. Univ. Padova, 83 (1990), 81-95.  Google Scholar

[30]

A. Quarteroni and A. Valli, Domain decomposition for a generalized Stokes problem, in, Proceedings of the Third European Conference on Mathematics in Industry (Glasgow, 1988) (eds. J. Manley, S. McKee, and D. Owens), Teubner, Stuttgart, 1990, 59-74.  Google Scholar

[31]

A. Valli, On the one-dimensional Navier-Stokes equations for compressible fluids, in The Navier-Stokes Equations (Oberwolfach, 1988) (eds. J. G. Heywood, K. Masuda, R. Rautmann and V. A. Solonnikov), Springer, Berlin, 1990, 173-179. doi: 10.1007/BFb0086068.  Google Scholar

[32]

A. Quarteroni, G. Sacchi Landriani and A. Valli, Coupling of viscous and inviscid Stokes equations via a domain decomposition method for finite elements, Numer. Math., 59 (1991), 831-859. doi: 10.1007/BF01385813.  Google Scholar

[33]

A. Quarteroni and A. Valli, Theory and applications of Steklov-Poincaré for boundary value problems: the heterogeneous operator case, in Fourth International Symposium on Domain Decomposition Methods for Partial Differential Equations (Moscow, 1990) (eds. R. Glowinski, Y. A. Kuznetsov, G. Meurant, J. Périaux and O. B. Widlund), SIAM, Philadelphia (PA), 1991, 58-81.  Google Scholar

[34]

A. Quarteroni and A. Valli, Theory and applications of Steklov-Poincaré operators for boundary value problems, in Applied and Industrial Mathematics (Venice, 1989) (ed. R. Spigler), Kluwer Acad. Publ., Dordrecht, 1991, 179-203.  Google Scholar

[35]

C. Carlenzoli, A. Quarteroni and A. Valli, Spectral domain decomposition methods for compressible Navier-Stokes equations, in Fifth International Symposium on Domain Decomposition Methods for Partial Differential Equations (Norfolk, VA, 1991) (eds. D. E. Keyes, T. F. Chan, G. Meurant, J. S. Scroggs and R. G. Voigt), SIAM, Philadelphia (PA), 1992, 441-450.  Google Scholar

[36]

A. Quarteroni, F. Pasquarelli and A. Valli, Heterogeneous domain decomposition: principles, algorithms, applications, in Fifth International Symposium on Domain Decomposition Methods for Partial Differential Equations (Norfolk, {VA, 1991)} (eds. D. E. Keyes, T. F. Chan, G. Meurant, J. S. Scroggs and R. G. Voigt), SIAM, Philadelphia (PA), 1992, 129-150.  Google Scholar

[37]

A. Valli, Mathematical results for compressible flows, in Mathematical Topics in Fluid Mechanics (Lisbon, 1991) (eds. J. F. Rodrigues and A. Sequeira), Longman Sci. Tech., Harlow, 1992, 193-229.  Google Scholar

[38]

A. Quarteroni and A. Valli, Mathematical modelling and numerical approximation of fluid flow, in Methods and Techniques in Computational Chemistry: METECC-94. Volume C: Structure and Dynamics (ed. E. Clementi), STEF, Cagliari, 1993, 247-298. Google Scholar

[39]

C. Carlenzoli, A. Quarteroni and A. Valli, Numerical solution of the Navier-Stokes equations for viscous compressible flows, in Applied Mathematics in Aerospace Science and Engineering (Erice, 1991) (eds. A. Miele and A. Salvetti), Plenum, New York (NY), 1994, 81-111.  Google Scholar

[40]

A. Alonso and A. Valli, A new approach to the coupling of viscous and inviscid Stokes equations, East-West J. Numer. Math., 3 (1995), 29-41.  Google Scholar

[41]

A. Alonso and A. Valli, Some remarks on the characterization of the space of tangential traces of $H(rot;\Omega)$ and the construction of an extension operator, Manuscripta Math., 89 (1996), 159-178. doi: 10.1007/BF02567511.  Google Scholar

[42]

A. Quarteroni and A. Valli, Domain decomposition methods for partial differential equations, in 27th Computational Fluid Dynamics (ed. H. Deconinck), Von Karman Institute for Fluid Dynamics, Rhode-Saint-Genèse, 1996, 1-90. Google Scholar

[43]

A. Alonso and A. Valli, Domain decomposition algorithms for low-frequency time-harmonic Maxwell equations, in Numerical Modelling in Continuum Mechanics (Prague, 1997) (eds. M. Feistauer, R. Rannacher and K. Kozel), Matfyzpress, Prague, 1997, 3-17. Google Scholar

[44]

A. Alonso and A. Valli, A domain decomposition approach for heterogeneous time-harmonic Maxwell equations, Comput. Methods Appl. Mech. Engrg., 143 (1997), 97-112. doi: 10.1016/S0045-7825(96)01144-9.  Google Scholar

[45]

A. Alonso, R. L. Trotta and A. Valli, Coercive domain decomposition algorithms for advection-diffusion equations and systems, J. Comput. Appl. Math., 96 (1998), 51-76. doi: 10.1016/S0377-0427(98)00091-0.  Google Scholar

[46]

A. Alonso and A. Valli, Finite element approximation of heterogeneous time-harmonic Maxwell equations via a domain decomposition approach, in International Conference on Differential Equations (Lisboa, 1995) (eds. L. Magalhães, C. Rocha and L. Sanchez), World Sci. Publ., River Edge, NJ, 1998, 227-232.  Google Scholar

[47]

A. Alonso and A. Valli, Unique solvability for high-frequency heterogeneous time-harmonic Maxwell equations via Fredholm alternative theory, Math. Methods Appl. Sci., 21 (1998), 463-477. doi: 10.1002/(SICI)1099-1476(199804)21:6<463::AID-MMA947>3.0.CO;2-U.  Google Scholar

[48]

A. Alonso and A. Valli, An optimal domain decomposition preconditioner for low-frequency time-harmonic Maxwell equations, Math. Comp., 68 (1999), 607-631. doi: 10.1090/S0025-5718-99-01013-3.  Google Scholar

[49]

A. Quarteroni and A. Valli, Domain decomposition methods for compressible flows, in Error Control and Adaptivity in Scientific Computing (Antalya, 1998) (eds. H. Bulgak and C. Zenger), Kluwer Acad. Publ., Dordrecht, 1999, 221-245.  Google Scholar

[50]

A. Alonso Rodríguez and A. Valli, Domain decomposition algorithms for time-harmonic Maxwell equations with damping, M2AN Math. Model. Numer. Anal., 35 (2001), 825-848. doi: 10.1051/m2an:2001137.  Google Scholar

[51]

A. Alonso Rodríguez and A. Valli, Domain decomposition methods for time-harmonic Maxwell equations: Numerical results}, in Recent Developments in Domain Decomposition Methods (Zürich, 2001) (eds. L. F. Pavarino and A. Toselli), Springer, Berlin, 2002, 157-171. doi: 10.1007/978-3-642-56118-4_10.  Google Scholar

[52]

A. Alonso Rodríguez, P. Fernandes and A. Valli, The time-harmonic eddy-current problem in general domains: Solvability via scalar potentials, in Computational Electromagnetics (Kiel, 2001) (eds. C. Carstensen, S. Funken, W. Hackbusch, R. H. W. Hoppe and P. Monk), Springer, Berlin, 2003, 143-163. doi: 10.1007/978-3-642-55745-3_10.  Google Scholar

[53]

A. Alonso Rodríguez, P. Fernandes and A. Valli, Weak and strong formulations for the time-harmonic eddy-current problem in general multi-connected domains, European J. Appl. Math., 14 (2003), 387-406. doi: 10.1017/S0956792503005151.  Google Scholar

[54]

A. Alonso Rodríguez, R. Hiptmair and A. Valli, Mixed finite element approximation of eddy current problems, IMA J. Numer. Anal., 24 (2004), 255-271. doi: 10.1093/imanum/24.2.255.  Google Scholar

[55]

A. Alonso Rodríguez and A. Valli, Mixed finite element approximation of eddy current problems based on the electric field, in ECCOMAS 2004: European Congress on Computational Methods in Applied Sciences and Engineering (Jyväskylä, 2004) (eds. P. Neittaanmäki, T. Rossi, K. Majava and O. Pironneau), volume 1, University of Jyväskylä. Department of Mathematics, Jyväskylä, 2004, 1-12. Google Scholar

[56]

A. Alonso Rodríguez, R. Hiptmair and A. Valli, A hybrid formulation of eddy current problems, Numer. Methods Partial Differential Equations, 21 (2005), 742-763. doi: 10.1002/num.20060.  Google Scholar

[57]

A. Quarteroni, M. Sala and A. Valli, An interface-strip domain decomposition preconditioner, SIAM J. Sci. Comput., 28 (2006), 498-516. doi: 10.1137/04061057X.  Google Scholar

[58]

O. Bíró and A. Valli, The Coulomb gauged vector potential formulation for the eddy-current problem in general geometry: well-posedness and numerical approximation, Comput. Methods Appl. Mech. Engrg., 196 (2007), 1890-1904. doi: 10.1016/j.cma.2006.10.008.  Google Scholar

[59]

M. Discacciati, A. Quarteroni and A. Valli, Robin-Robin domain decomposition methods for the Stokes-Darcy coupling, SIAM J. Numer. Anal., 45 (2007), 1246-1268. doi: 10.1137/06065091X.  Google Scholar

[60]

P. Fernandes and A. Valli, Lorenz-gauged vector potential formulations for the time-harmonic eddy-current problem with $L^\infty$-regularity of material properties, Math. Methods Appl. Sci., 31 (2008), 71-98. doi: 10.1002/mma.900.  Google Scholar

[61]

A. Alonso Rodríguez and A. Valli, Voltage and current excitation for time-harmonic eddy-current problems, SIAM J. Appl. Math., 68 (2008), 1477-1494. doi: 10.1137/070697677.  Google Scholar

[62]

A. Alonso Rodríguez and A. Valli, A FEM-BEM approach for electro-magnetostatics and time-harmonic eddy-current problems, Appl. Numer. Math., 59 (2009), 2036-2049. doi: 10.1016/j.apnum.2008.12.002.  Google Scholar

[63]

A. Alonso Rodríguez, A. Valli and R. Vázquez Hernández, A formulation of the eddy current problem in the presence of electric ports, Numer. Math., 113 (2009), 643-672. doi: 10.1007/s00211-009-0241-7.  Google Scholar

[64]

A. Alonso Rodríguez, J. Camaño and A. Valli, Inverse source problems for eddy current equations, Inverse Problems, 28 (2012), 015006, 15 pp. doi: 10.1088/0266-5611/28/1/015006.  Google Scholar

[65]

A. Valli, Solving an electrostatics-like problem with a current dipole source by means of the duality method, Appl. Math. Lett., 25 (2012), 1410-1414. doi: 10.1016/j.aml.2011.12.013.  Google Scholar

[66]

A. Alonso Rodríguez, E. Bertolazzi, R. Ghiloni and A. Valli, Construction of a finite element basis of the first de Rham cohomology group and numerical solution of 3D magnetostatic problems, SIAM J. Numer. Anal., 51 (2013), 2380-2402. doi: 10.1137/120890648.  Google Scholar

[67]

A. Alonso Rodríguez, J. Camaño, R. Rodríguez and A. Valli, A posteriori error estimates for the problem of electrostatics with a dipole source, Comput. Math. Appl., 68 (2014), 464-485. doi: 10.1016/j.camwa.2014.06.017.  Google Scholar

[68]

A. Alonso Rodríguez and A. Valli, Finite element potentials, Appl. Numer. Math., 95 (2015), 2-14. doi: 10.1016/j.apnum.2014.05.014.  Google Scholar

[69]

A. Alonso Rodríguez and A. Valli, Eddy Current Approximation of Maxwell Equations, Springer Italia, Milan, 2010. doi: 10.1007/978-88-470-1506-7.  Google Scholar

[70]

A. Quarteroni and A. Valli, Domain Decomposition Methods for Partial Differential Equations, Oxford University Press, Oxford, 1999.  Google Scholar

[71]

A. Quarteroni and A. Valli, Numerical Approximation of Partial Differential Equations, Springer, Berlin, 1994.  Google Scholar

[1]

Hugo Beirão da Veiga, Alessandro Morando, Paola Trebeschi. The research of Paolo Secchi. Discrete & Continuous Dynamical Systems - S, 2016, 9 (1) : iii-ix. doi: 10.3934/dcdss.2016.9.1iii

[2]

Daniel Genin. Research announcement: Boundedness of orbits for trapezoidal outer billiards. Electronic Research Announcements, 2008, 15: 71-78. doi: 10.3934/era.2008.15.71

[3]

Li Zhang, Xiaofeng Zhou, Min Chen. The research on the properties of Fourier matrix and bent function. Numerical Algebra, Control & Optimization, 2020, 10 (4) : 571-578. doi: 10.3934/naco.2020052

[4]

Liu Hui, Lin Zhi, Waqas Ahmad. Network(graph) data research in the coordinate system. Mathematical Foundations of Computing, 2018, 1 (1) : 1-10. doi: 10.3934/mfc.2018001

[5]

Leonid A. Bunimovich. Dynamical systems and operations research: A basic model. Discrete & Continuous Dynamical Systems - B, 2001, 1 (2) : 209-218. doi: 10.3934/dcdsb.2001.1.209

[6]

Richard Evan Schwartz. Research announcement: unbounded orbits for outer billiards. Electronic Research Announcements, 2007, 14: 1-6. doi: 10.3934/era.2007.14.1

[7]

Daniel T. Wise. Research announcement: The structure of groups with a quasiconvex hierarchy. Electronic Research Announcements, 2009, 16: 44-55. doi: 10.3934/era.2009.16.44

[8]

Chengwen Jiao, Qi Feng. Research on the parallel–batch scheduling with linearly lookahead model. Journal of Industrial & Management Optimization, 2021, 17 (6) : 3551-3558. doi: 10.3934/jimo.2020132

[9]

Erika T. Camacho, Christopher M. Kribs-Zaleta, Stephen Wirkus. The mathematical and theoretical biology institute - a model of mentorship through research. Mathematical Biosciences & Engineering, 2013, 10 (5&6) : 1351-1363. doi: 10.3934/mbe.2013.10.1351

[10]

Jingni Guo, Junxiang Xu, Zhenggang He, Wei Liao. Research on cascading failure modes and attack strategies of multimodal transport network. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2020159

[11]

Yi Zhang, Xiao-Li Ma. Research on image digital watermarking optimization algorithm under virtual reality technology. Discrete & Continuous Dynamical Systems - S, 2019, 12 (4&5) : 1427-1440. doi: 10.3934/dcdss.2019098

[12]

Yuxue Li, Maozhu Jin, Peiyu Ren, Zhixue Liao. Research on the optimal initial shunt strategy of Jiuzhaigou based on the optimization model. Discrete & Continuous Dynamical Systems - S, 2015, 8 (6) : 1239-1249. doi: 10.3934/dcdss.2015.8.1239

[13]

Zuo-Jun max Shen. Integrated supply chain design models: a survey and future research directions. Journal of Industrial & Management Optimization, 2007, 3 (1) : 1-27. doi: 10.3934/jimo.2007.3.1

[14]

Xin Li, Ziguan Cui, Linhui Sun, Guanming Lu, Debnath Narayan. Research on iterative repair algorithm of Hyperchaotic image based on support vector machine. Discrete & Continuous Dynamical Systems - S, 2019, 12 (4&5) : 1199-1218. doi: 10.3934/dcdss.2019083

[15]

Tinggui Chen, Yanhui Jiang. Research on operating mechanism for creative products supply chain based on game theory. Discrete & Continuous Dynamical Systems - S, 2015, 8 (6) : 1103-1112. doi: 10.3934/dcdss.2015.8.1103

[16]

Aloev Rakhmatillo, Khudoyberganov Mirzoali, Blokhin Alexander. Construction and research of adequate computational models for quasilinear hyperbolic systems. Numerical Algebra, Control & Optimization, 2018, 8 (3) : 277-289. doi: 10.3934/naco.2018017

[17]

Kaitlin Riegel. Frustration in mathematical problem-solving: A systematic review of research. STEM Education, 2021, 1 (3) : 157-169. doi: 10.3934/steme.2021012

[18]

Chao Mi, Jun Wang, Weijian Mi, Youfang Huang, Zhiwei Zhang, Yongsheng Yang, Jun Jiang, Postolache Octavian. Research on regional clustering and two-stage SVM method for container truck recognition. Discrete & Continuous Dynamical Systems - S, 2019, 12 (4&5) : 1117-1133. doi: 10.3934/dcdss.2019077

[19]

Zhanyou Ma, Wenbo Wang, Wuyi Yue, Yutaka Takahashi. Performance analysis and optimization research of multi-channel cognitive radio networks with a dynamic channel vacation scheme. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020144

[20]

Yanan Wang, Tao Xie, Xiaowen Jie. A mathematical analysis for the forecast research on tourism carrying capacity to promote the effective and sustainable development of tourism. Discrete & Continuous Dynamical Systems - S, 2019, 12 (4&5) : 837-847. doi: 10.3934/dcdss.2019056

2020 Impact Factor: 2.425

Metrics

  • PDF downloads (61)
  • HTML views (1)
  • Cited by (0)

[Back to Top]