\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Isogeometric collocation mixed methods for rods

Abstract Related Papers Cited by
  • Isogeometric collocation mixed methods for spatial rods are presented and studied. A theoretical analysis of stability and convergence is available. The proposed schemes are locking-free, irrespective of the selected approximation spaces.
    Mathematics Subject Classification: Primary: 65L60; Secondary: 74K10, 74S25.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    K. Arunakirinathar and B. D. Reddy, Mixed finite element methods for elastic rods of arbitrary geometry, Numerische Mathematik, 64 (1993), 13-43.doi: 10.1007/BF01388679.

    [2]

    F. Auricchio, L. Beirão da Veiga, T. J. R. Hughes, A. Reali and G. Sangalli, Isogeometric collocation methods, Mathematical Models and Methods in Applied Sciences, 20 (2010), 2075-2107.doi: 10.1142/S0218202510004878.

    [3]

    F. Auricchio, L. Beirão da Veiga, T. J. R. Hughes, A. Reali and G. Sangalli, Isogeometric collocation for elastostatics and explicit dynamics, Computer Methods in Applied Mechanics and Engineering, 249 (2012), 2-14.doi: 10.1016/j.cma.2012.03.026.

    [4]

    F. Auricchio, L. Beirão da Veiga, J. Kiendl, C. Lovadina and A. Reali, Locking-free isogeometric collocation methods for spatial Timoshenko rods, Comput. Methods Appl. Mech. Engrg., 263 (2013), 113-126.doi: 10.1016/j.cma.2013.03.009.

    [5]

    L. Beirão da Veiga, A. Buffa, J. Rivas and G. Sangalli, Some estimates for $h-p-k-$refinement in isogeometric analysis, Numerische Mathematik, 118 (2011), 271-305.doi: 10.1007/s00211-010-0338-z.

    [6]

    L. Beirão da Veiga, C. Lovadina and A. Reali, Avoiding shear locking for the Timoshenko beam problem via isogeometric collocation methods, Computer Methods in Applied Mechanics and Engineering, 241/244 (2012), 38-51.doi: 10.1016/j.cma.2012.05.020.

    [7]

    D. Chapelle, A locking-free approximation of curved rods by straight beam elements, Numerische Mathematik, 77 (1997), 299-322.doi: 10.1007/s002110050288.

    [8]

    J. A. Cottrell, T. J. R. Hughes and Y. Bazilevs, Isogeometric Analysis. Towards Integration of CAD and FEA, Wiley, 2009.

    [9]

    J. A. Cottrell, A. Reali, Y. Bazilevs and T. J. R. Hughes, Isogeometric analysis of structural vibrations, Computer Methods in Applied Mechanics and Engineering, 195 (2006), 5257-5296.doi: 10.1016/j.cma.2005.09.027.

    [10]

    C. de Boor, A Practical Guide to Splines, Springer, 2001.

    [11]

    S. Demko, On the existence of interpolation projectors onto spline spaces, Journal of Approximation Theory, 43 (1985), 151-156.doi: 10.1016/0021-9045(85)90123-6.

    [12]

    T. J. R. Hughes, J. A. Cottrell and Y. Bazilevs, Isogeometric analysis: CAD, finite elements, NURBS, exact geometry, and mesh refinement, Computer Methods in Applied Mechanics and Engineering, 194 (2005), 4135-4195.doi: 10.1016/j.cma.2004.10.008.

    [13]

    T. J. R. Hughes, A. Reali and G. Sangalli, Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of $p$-method finite elements with $k$-method NURBS, Computer Methods in Applied Mechanics and Engineering, 197 (2008), 4104-4124.doi: 10.1016/j.cma.2008.04.006.

    [14]

    R. W. Johnson, A B-spline collocation method for solving the incompressible Navier-Stokes equations using an ad hoc method: The Boundary Residual method, Computers & Fluids, 34 (2005), 121-149.doi: 10.1016/j.compfluid.2004.03.005.

    [15]

    A. Reali, An isogeometric analysis approach for the study of structural vibrations, Journal of Earthquake Engineering, 10 (2006), 1-30.

    [16]

    D. Schillinger, J. A. Evans, A. Reali, M. A. Scott and T. J. R. Hughes, Isogeometric collocation methods: Cost comparison with Galerkin methods and extension to hierarchical discretizations, Computer Methods in Applied Mechanics and Engineering, 267 (2013), 170-232.

  • 加载中
SHARE

Article Metrics

HTML views(281) PDF downloads(100) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return