\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Existence, uniqueness, stability and asymptotic behavior of solutions for a mathematical model of atherosclerosis

Abstract Related Papers Cited by
  • We study an atherosclerosis model described by a reaction-diffusion system of three equations, in one dimension, with homogeneous Neumann boundary conditions. The method of upper and lower solutions and its associated monotone iteration (the monotone iterative method) are used to establish existence, uniqueness and boundedness of global solutions for the problem. Upper and lower solutions are derived for the corresponding steady-state problem. Moreover, solutions of Cauchy problems defined for time-dependent system are presented as alternatives upper and lower solutions. The stability of constant steady-state solutions and the asymptotic behavior of the time-dependent solutions are studied.
    Mathematics Subject Classification: Primary: 35K57, 92C50; Secondary: 35A01, 35A08, 35B35, 35B40.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    N. F. Britton, Reaction-Diffusion Equations and their Applications to Biology, Academic Press Inc., London, 1986.

    [2]

    V. Calvez, A. Ebde, N. Meunier and A. Raoult, Mathematical and numerical modeling of the atherosclerotic plaque formation, ESAIM Proceedings, 28 (2009), 1-12.doi: 10.1051/proc/2009036.

    [3]

    V. Calvez, J. Houot, N. Meunier, A. Raoult and G. Rusnakova, Mathematical and numerical modeling of early atherosclerotic lesions, ESAIM Proceedings, 30 (2010), 1-14.doi: 10.1051/proc/2010002.

    [4]

    P. C. Fife, Mathematical Aspects of Reacting and Diffusing Systems, Springer-Verlag, Berlin Heidelberg, 1979.

    [5]

    A. Friedman, Partial Differential Equations of Parabolic Type, R.E. Krieger Pub. Co., 1983.

    [6]

    H. Daniel, Geometric Theory of Semilinear Parabolic Equations, Springer-Verlag, Berlin Heidelberg, 1981.

    [7]

    N. Filipovic, D. Nikolic, I. Saveljic, Z. Milosevic, T. Exarchos, G. Pelosi and O. Parodi, Computer simulation of three-dimensional plaque formation and progression in the coronary artery, Elsevier, Computers & Fluids, 88 (2013), 826-833.doi: 10.1016/j.compfluid.2013.07.006.

    [8]

    W. Hao and A. Friedman, The LDL-HDL profile determines the risk of atherosclerosis- a mathematical model, PLoS ONE, 9 (2014), e90497.doi: 10.1371/journal.pone.0090497.

    [9]

    N. El Khatib, S. Genieys and V. Volpert, Atherosclerosis initiation modeled as an inflammatory process, Math. Model Nat. Phenom., 2 (2007), 126-141.doi: 10.1051/mmnp:2008022.

    [10]

    N. El Khatib, S. Genieys, B. Kazmierczak and V. Volpert, Mathematical modeling of atherosclerosis as an inflammatory disease, Phil. Trans. R. Soc. A, 367 (2009), 4877-4886.doi: 10.1098/rsta.2009.0142.

    [11]

    N. El Khatib, S. Genieys, B. Kazmierczak and V. Volpert, Reaction-diffusion model of atherosclerosis development, J. Math. Biol., 65 (2012), 349-374.doi: 10.1007/s00285-011-0461-1.

    [12]

    N. V. Krylov, Lectures on Elliptic and Parabolic Equations in Hölder Spaces, American Math. Society, 1996.doi: 10.1090/gsm/012.

    [13]

    O. Ladyzhenskaya, V. Solonnikov and N. Uraltseva, Linear and Quasi-linear Equations of Parabolic Type, American Math. Soc., 1968.

    [14]

    B. Liu and D. Tang, Computer simulations of atherosclerosis plaque growth in coronary arteries, Mol. Cell. Biomech., 7 (2010), 193-202.

    [15]

    C. V. Pao, Nonlinear Parabolic and Elliptic Equations, Plenum Press, New York, 1992.

    [16]

    C. V. Pao, Quasisolutions and global attractor of reaction-diffusion systems, Elsevier Science Ltd, Nonlinear Analysis, 26 (1996), 1889-1903.doi: 10.1016/0362-546X(95)00058-4.

    [17]

    M. H. Protter and H. F. Weinberger, Maximum Principles in Differential Equations, Springer-Verlag, New York, 1984.doi: 10.1007/978-1-4612-5282-5.

    [18]

    R. Ross, Atherosclerosis - an inflammatory disease, Massachussets Medical Soc., 340 (1999), 115-126.

    [19]

    F. Rothe, Global Solutions of Reaction-Diffusion System, Springer-Verlag, Berlin Heidelberg, 1984.

    [20]

    D. H. Sattinger, Monotone methods in nonlinear elliptic and parabolic bounded value problems, Indiana University Math. Journal, 21 (1972), 979-1000.

    [21]

    T. Silva, A. Sequeira, R. Santos and J. Tiago, Mathematical modeling of atherosclerotic plaque formation coupled with a non-Newtonian model of blood flow, Hindawi Publishing Corporation Conf. Papers in Math., 2013 (2013), Article ID 405914, 14 pages.doi: 10.1155/2013/405914.

  • 加载中
SHARE

Article Metrics

HTML views(49) PDF downloads(221) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return