Advanced Search
Article Contents
Article Contents

Elliptic boundary value problems in spaces of continuous functions

Abstract Related Papers Cited by
  • In these notes we consider second order linear elliptic boundary value problems in the framework of different spaces on continuous functions. We appeal to a general formulation which contains some interesting particular cases as, for instance, a new class of functional spaces, called here Hölog spaces and denoted by the symbol $\, C^{0,\,\lambda}_\alpha(\overline{\Omega}) \,,$ $\,0 \leq\,\lambda<\,1\,,$ and $\,\alpha \in\,\mathbb{R}\,.$ One has the following inclusions $$ C^{0,\,\lambda+\,\epsilon}(\overline{\Omega})\subset \,C^{0,\,\lambda}_\alpha(\overline{\Omega})\subset \,C^{0,\,\lambda}(\overline{\Omega}) \subset \,C^{0,\,\lambda,}_{-\alpha}(\overline{\Omega}) \subset\,C^{0,\,\lambda-\,\epsilon}(\overline{\Omega})\,, $$ for $\,\alpha>\,0\,$ ($\epsilon >\,0\,$ arbitrarily small). Roughly speaking, for each fixed $\,\lambda\,,$ the family $\, C^{0,\,\lambda}_\alpha(\overline{\Omega}) \,$ is a refinement of the single Hölder classical space $\, C^{0,\,\lambda}(\overline{\Omega})=\,C^{0,\,\lambda}_0(\overline{\Omega})\,.$ On the other hand, for $\,\lambda=\,0\,$ and $\,\alpha>\,0\,,$ $\,C^{0,\,0}_\alpha(\overline{\Omega})=\,\, D^{0,\,\alpha}(\overline{\Omega})\,$ is a Log space. The more interesting feature is that, as for classical Hölder (and Sobolev) spaces, full regularity occurs. namely, for each $\,\lambda>\,0\,$ and arbitrary real $\,\alpha\,,$ $\,\nabla^2\,u $ and $\,f\,$ enjoy the same $\, C^{0,\,\lambda}_\alpha(\overline{\Omega}) \,$ regularity. All the above setup is presented as part of a more general picture.
    Mathematics Subject Classification: Primary: 31B10; Secondary: 31B35, 33E30, 35A09, 35B65, 35J25, 58F15, 58F17.


    \begin{equation} \\ \end{equation}
  • [1]

    H. Beirão da Veiga, On the solutions in the large of the two-dimensional flow of a nonviscous incompressible fluid, J. Diff. Eq., 54 (1984), 373-389.doi: 10.1016/0022-0396(84)90149-9.


    H. Beirão da Veiga, Concerning the existence of classical solutions to the Stokes system. On the minimal assumptions problem, J. Math. Fluid Mech., 16 (2014), 539-550.doi: 10.1007/s00021-014-0170-9.


    H. Beirão da Veiga, An overview on classical solutions to $2-D$ Euler equations and to elliptic boundary value problems, in Recent Progress in the Theory of the Euler and Navier-Stokes Equations (eds. J. C. Robinson, J. L. Rodrigo, W. Sadowski and A. V. López), London Math. Soc. Lecture Notes, (forthcoming).


    H. Beirão da Veiga, On some regularity results for the stationary Stokes system and the $2-D$ Euler equations, Portugaliae Math., 72 (2015), 285-307.doi: 10.4171/PM/1969.


    H. Beirão da Veiga, H-log spaces of continuous functions, potentials, and elliptic boundary value problems, arXiv:1503.04173, 2015.


    L. Bers, F. John and M. Schechter, Partial Differential Equations, John Wiley and Sons, Inc., New-York, 1964.


    C. C. Burch, The Dini condition and regularity of weak solutions of elliptic equations, J. Diff. Eq., 30 (1978), 308-323.doi: 10.1016/0022-0396(78)90003-7.


    D. V. Cruz-Uribe and A. Fiorenza, Variable Lebesgue Spaces Foundations and Harmonic Analysis, Springer, Basel 2013.doi: 10.1007/978-3-0348-0548-3.


    O. A. Ladyzenskaya, The Mathematical Theory of Viscous Incompressible Flow, Gordon and Breach, New-York, 1969.


    V. L. Shapiro, Generalized and classical solutions of the nonlinear stationary Navier-Stokes equations, Trans. Amer. Math. Soc., 216 (1976), 61-79.doi: 10.1090/S0002-9947-1976-0390550-X.


    I. I. Sharapudinov, The basis property of the Haar system in the space $L^{p(t)}[0,1]$, and the principle of localization in the mean, Mat. Sb. (N.S.), 130 (1986), 275-283, 286.


    V. A. Solonnikov, On estimates of Green's tensors for certain boundary value problems, Doklady Akad. Nauk., 130 (1960), 128-131.

  • 加载中

Article Metrics

HTML views(492) PDF downloads(211) Cited by(0)

Access History

Other Articles By Authors



    DownLoad:  Full-Size Img  PowerPoint