    February  2016, 9(1): 43-52. doi: 10.3934/dcdss.2016.9.43

## Elliptic boundary value problems in spaces of continuous functions

 1 Dipartimento di Matematica Applicata, Università di Pisa, Via Buonarroti 1/C, 56127 Pisa

Received  September 2014 Revised  February 2015 Published  December 2015

In these notes we consider second order linear elliptic boundary value problems in the framework of different spaces on continuous functions. We appeal to a general formulation which contains some interesting particular cases as, for instance, a new class of functional spaces, called here Hölog spaces and denoted by the symbol $\, C^{0,\,\lambda}_\alpha(\overline{\Omega}) \,,$ $\,0 \leq\,\lambda<\,1\,,$ and $\,\alpha \in\,\mathbb{R}\,.$ One has the following inclusions $$C^{0,\,\lambda+\,\epsilon}(\overline{\Omega})\subset \,C^{0,\,\lambda}_\alpha(\overline{\Omega})\subset \,C^{0,\,\lambda}(\overline{\Omega}) \subset \,C^{0,\,\lambda,}_{-\alpha}(\overline{\Omega}) \subset\,C^{0,\,\lambda-\,\epsilon}(\overline{\Omega})\,,$$ for $\,\alpha>\,0\,$ ($\epsilon >\,0\,$ arbitrarily small). Roughly speaking, for each fixed $\,\lambda\,,$ the family $\, C^{0,\,\lambda}_\alpha(\overline{\Omega}) \,$ is a refinement of the single Hölder classical space $\, C^{0,\,\lambda}(\overline{\Omega})=\,C^{0,\,\lambda}_0(\overline{\Omega})\,.$ On the other hand, for $\,\lambda=\,0\,$ and $\,\alpha>\,0\,,$ $\,C^{0,\,0}_\alpha(\overline{\Omega})=\,\, D^{0,\,\alpha}(\overline{\Omega})\,$ is a Log space. The more interesting feature is that, as for classical Hölder (and Sobolev) spaces, full regularity occurs. namely, for each $\,\lambda>\,0\,$ and arbitrary real $\,\alpha\,,$ $\,\nabla^2\,u$ and $\,f\,$ enjoy the same $\, C^{0,\,\lambda}_\alpha(\overline{\Omega}) \,$ regularity. All the above setup is presented as part of a more general picture.
Citation: Hugo Beirão da Veiga. Elliptic boundary value problems in spaces of continuous functions. Discrete and Continuous Dynamical Systems - S, 2016, 9 (1) : 43-52. doi: 10.3934/dcdss.2016.9.43
##### References:
  H. Beirão da Veiga, On the solutions in the large of the two-dimensional flow of a nonviscous incompressible fluid, J. Diff. Eq., 54 (1984), 373-389. doi: 10.1016/0022-0396(84)90149-9.   H. Beirão da Veiga, Concerning the existence of classical solutions to the Stokes system. On the minimal assumptions problem, J. Math. Fluid Mech., 16 (2014), 539-550. doi: 10.1007/s00021-014-0170-9.   H. Beirão da Veiga, An overview on classical solutions to $2-D$ Euler equations and to elliptic boundary value problems,, in Recent Progress in the Theory of the Euler and Navier-Stokes Equations (eds. J. C. Robinson, (). H. Beirão da Veiga, On some regularity results for the stationary Stokes system and the $2-D$ Euler equations, Portugaliae Math., 72 (2015), 285-307. doi: 10.4171/PM/1969.   H. Beirão da Veiga, H-log spaces of continuous functions, potentials, and elliptic boundary value problems, arXiv:1503.04173, 2015. L. Bers, F. John and M. Schechter, Partial Differential Equations, John Wiley and Sons, Inc., New-York, 1964.  C. C. Burch, The Dini condition and regularity of weak solutions of elliptic equations, J. Diff. Eq., 30 (1978), 308-323. doi: 10.1016/0022-0396(78)90003-7.   D. V. Cruz-Uribe and A. Fiorenza, Variable Lebesgue Spaces Foundations and Harmonic Analysis, Springer, Basel 2013. doi: 10.1007/978-3-0348-0548-3.   O. A. Ladyzenskaya, The Mathematical Theory of Viscous Incompressible Flow, Gordon and Breach, New-York, 1969.  V. L. Shapiro, Generalized and classical solutions of the nonlinear stationary Navier-Stokes equations, Trans. Amer. Math. Soc., 216 (1976), 61-79. doi: 10.1090/S0002-9947-1976-0390550-X.   I. I. Sharapudinov, The basis property of the Haar system in the space $L^{p(t)}[0,1]$, and the principle of localization in the mean, Mat. Sb. (N.S.), 130 (1986), 275-283, 286.  V. A. Solonnikov, On estimates of Green's tensors for certain boundary value problems, Doklady Akad. Nauk., 130 (1960), 128-131. show all references

##### References:
  H. Beirão da Veiga, On the solutions in the large of the two-dimensional flow of a nonviscous incompressible fluid, J. Diff. Eq., 54 (1984), 373-389. doi: 10.1016/0022-0396(84)90149-9.   H. Beirão da Veiga, Concerning the existence of classical solutions to the Stokes system. On the minimal assumptions problem, J. Math. Fluid Mech., 16 (2014), 539-550. doi: 10.1007/s00021-014-0170-9.   H. Beirão da Veiga, An overview on classical solutions to $2-D$ Euler equations and to elliptic boundary value problems,, in Recent Progress in the Theory of the Euler and Navier-Stokes Equations (eds. J. C. Robinson, (). H. Beirão da Veiga, On some regularity results for the stationary Stokes system and the $2-D$ Euler equations, Portugaliae Math., 72 (2015), 285-307. doi: 10.4171/PM/1969.   H. Beirão da Veiga, H-log spaces of continuous functions, potentials, and elliptic boundary value problems, arXiv:1503.04173, 2015. L. Bers, F. John and M. Schechter, Partial Differential Equations, John Wiley and Sons, Inc., New-York, 1964.  C. C. Burch, The Dini condition and regularity of weak solutions of elliptic equations, J. Diff. Eq., 30 (1978), 308-323. doi: 10.1016/0022-0396(78)90003-7.   D. V. Cruz-Uribe and A. Fiorenza, Variable Lebesgue Spaces Foundations and Harmonic Analysis, Springer, Basel 2013. doi: 10.1007/978-3-0348-0548-3.   O. A. Ladyzenskaya, The Mathematical Theory of Viscous Incompressible Flow, Gordon and Breach, New-York, 1969.  V. L. Shapiro, Generalized and classical solutions of the nonlinear stationary Navier-Stokes equations, Trans. Amer. Math. Soc., 216 (1976), 61-79. doi: 10.1090/S0002-9947-1976-0390550-X.   I. I. Sharapudinov, The basis property of the Haar system in the space $L^{p(t)}[0,1]$, and the principle of localization in the mean, Mat. Sb. (N.S.), 130 (1986), 275-283, 286.  V. A. Solonnikov, On estimates of Green's tensors for certain boundary value problems, Doklady Akad. Nauk., 130 (1960), 128-131. John Baxley, Mary E. Cunningham, M. Kathryn McKinnon. Higher order boundary value problems with multiple solutions: examples and techniques. Conference Publications, 2005, 2005 (Special) : 84-90. doi: 10.3934/proc.2005.2005.84  Feliz Minhós, Rui Carapinha. On higher order nonlinear impulsive boundary value problems. Conference Publications, 2015, 2015 (special) : 851-860. doi: 10.3934/proc.2015.0851  Angelo Favini, Yakov Yakubov. Regular boundary value problems for ordinary differential-operator equations of higher order in UMD Banach spaces. Discrete and Continuous Dynamical Systems - S, 2011, 4 (3) : 595-614. doi: 10.3934/dcdss.2011.4.595  Muhammad Aslam Noor, Khalida Inayat Noor. Properties of higher order preinvex functions. Numerical Algebra, Control and Optimization, 2021, 11 (3) : 431-441. doi: 10.3934/naco.2020035  Feliz Minhós, A. I. Santos. Higher order two-point boundary value problems with asymmetric growth. Discrete and Continuous Dynamical Systems - S, 2008, 1 (1) : 127-137. doi: 10.3934/dcdss.2008.1.127  Yaobin Ou, Pan Shi. Global classical solutions to the free boundary problem of planar full magnetohydrodynamic equations with large initial data. Discrete and Continuous Dynamical Systems - B, 2017, 22 (2) : 537-567. doi: 10.3934/dcdsb.2017026  John R. Graef, Lingju Kong, Bo Yang. Positive solutions of a nonlinear higher order boundary-value problem. Conference Publications, 2009, 2009 (Special) : 276-285. doi: 10.3934/proc.2009.2009.276  G. R. Cirmi, S. Leonardi. Higher differentiability for solutions of linear elliptic systems with measure data. Discrete and Continuous Dynamical Systems, 2010, 26 (1) : 89-104. doi: 10.3934/dcds.2010.26.89  Anna Anop, Robert Denk, Aleksandr Murach. Elliptic problems with rough boundary data in generalized Sobolev spaces. Communications on Pure and Applied Analysis, 2021, 20 (2) : 697-735. doi: 10.3934/cpaa.2020286  Sofia Giuffrè, Giovanna Idone. On linear and nonlinear elliptic boundary value problems in the plane with discontinuous coefficients. Discrete and Continuous Dynamical Systems, 2011, 31 (4) : 1347-1363. doi: 10.3934/dcds.2011.31.1347  Zhilin Yang, Jingxian Sun. Positive solutions of a fourth-order boundary value problem involving derivatives of all orders. Communications on Pure and Applied Analysis, 2012, 11 (5) : 1615-1628. doi: 10.3934/cpaa.2012.11.1615  Alexandre B. Simas, Fábio J. Valentim. $W$-Sobolev spaces: Higher order and regularity. Communications on Pure and Applied Analysis, 2015, 14 (2) : 597-607. doi: 10.3934/cpaa.2015.14.597  Shujie Li, Zhitao Zhang. Multiple solutions theorems for semilinear elliptic boundary value problems with resonance at infinity. Discrete and Continuous Dynamical Systems, 1999, 5 (3) : 489-493. doi: 10.3934/dcds.1999.5.489  Inara Yermachenko, Felix Sadyrbaev. Types of solutions and multiplicity results for second order nonlinear boundary value problems. Conference Publications, 2007, 2007 (Special) : 1061-1069. doi: 10.3934/proc.2007.2007.1061  Olga A. Brezhneva, Alexey A. Tret’yakov, Jerrold E. Marsden. Higher--order implicit function theorems and degenerate nonlinear boundary-value problems. Communications on Pure and Applied Analysis, 2008, 7 (2) : 293-315. doi: 10.3934/cpaa.2008.7.293  G. Métivier, K. Zumbrun. Symmetrizers and continuity of stable subspaces for parabolic-hyperbolic boundary value problems. Discrete and Continuous Dynamical Systems, 2004, 11 (1) : 205-220. doi: 10.3934/dcds.2004.11.205  Sandra Lucente. Large data solutions for semilinear higher order equations. Discrete and Continuous Dynamical Systems - S, 2020, 13 (12) : 3525-3533. doi: 10.3934/dcdss.2020247  Yohei Fujishima. On the effect of higher order derivatives of initial data on the blow-up set for a semilinear heat equation. Communications on Pure and Applied Analysis, 2018, 17 (2) : 449-475. doi: 10.3934/cpaa.2018025  Olha P. Kupenko, Rosanna Manzo. On optimal controls in coefficients for ill-posed non-Linear elliptic Dirichlet boundary value problems. Discrete and Continuous Dynamical Systems - B, 2018, 23 (4) : 1363-1393. doi: 10.3934/dcdsb.2018155  Angelo Favini, Gisèle Ruiz Goldstein, Jerome A. Goldstein, Silvia Romanelli. Selfadjointness of degenerate elliptic operators on higher order Sobolev spaces. Discrete and Continuous Dynamical Systems - S, 2011, 4 (3) : 581-593. doi: 10.3934/dcdss.2011.4.581

2020 Impact Factor: 2.425