-
Previous Article
Discrete models for fluid-structure interactions: The finite element Immersed Boundary Method
- DCDS-S Home
- This Issue
-
Next Article
On the regularity up to the boundary for certain nonlinear elliptic systems
On the concentration of entropy for scalar conservation laws
1. | SISSA, via Bonomea 265, Trieste, I-34163, Italy, Italy |
References:
[1] |
L. Ambrosio and C. De Lellis, A note on admissible solutions of 1d scalar conservation laws and 2d Hamilton-Jacobi equations, J. Hyperbolic Diff. Equ., 1 (2004), 813-826.
doi: 10.1142/S0219891604000263. |
[2] |
D. Amadori, Initial-boundary value problems for nonlinear systems of conservation laws, NoDEA Nonlinear Differential Equations Appl., 4 (1997), 1-42.
doi: 10.1007/PL00001406. |
[3] |
C. Bardos, A. Y. le Roux and J.-C. Nédélec, First order quasilinear equations with boundary conditions, Comm. Partial Differential Equations, 4 (1979), 1017-1034.
doi: 10.1080/03605307908820117. |
[4] |
G. Bellettini, L. Bertini, M. Mariani and M. Novaga, $\Gamma$-entropy cost for scalar conservation laws, Archive for Rational Mechanics and Analysis, 195 (2010), 261-309.
doi: 10.1007/s00205-008-0197-2. |
[5] |
S. Bianchini and L. Caravenna, SBV regularity for genuinely nonlinear, strictly hyperbolic systems of conservation laws in one space dimension, Communications in Mathematical Physics, 313 (2012), 1-33.
doi: 10.1007/s00220-012-1480-5. |
[6] |
S. Bianchini and L. Yu, Structure of entropy solutions to general scalar conservation laws in one space dimension, J. Math. Anal. Appl., 428 (2015), 356-386.
doi: 10.1016/j.jmaa.2015.03.006. |
[7] |
A. Bressan and P. G. LeFloch, Structural stability and regularity of entropy solutions to hyperbolic systems of conservation laws, Indiana Univ. Math. J., 48 (1999), 43-84.
doi: 10.1512/iumj.1999.48.1524. |
[8] |
A. Bressan, Hyperbolic Systems of Conservation Laws, Oxford Lecture Series in Mathematics and its Applications, vol. 20, Oxford University Press, Oxford, 2000. |
[9] |
C. M. Dafermos, Hyperbolic Conservation Laws in Continuum Physics, Third edition, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 325, Springer-Verlag, Berlin, 2010.
doi: 10.1007/978-3-642-04048-1. |
[10] |
S. N. Kružkov, First order quasilinear equations with several independent variables, Mat. Sb. (N.S.), 81 (1970), 228-255. |
[11] |
C. De Lellis, F. Otto and M. Westdickenberg, Structure of entropy solutions for multi-dimensional scalar conservation laws, Archive for Rational Mechanics and Analysis, 170 (2003), 137-184.
doi: 10.1007/s00205-003-0270-9. |
[12] |
C. De Lellis and T. Rivière, Concentration estimates for entropy measures, Journal de Mathématiques Pures et Appliquées, 82 (2003), 1343-1367.
doi: 10.1016/S0021-7824(03)00061-8. |
[13] |
F. Otto, Initial-boundary value problem for a scalar conservation law, C. R. Acad. Sci. Paris Sér. I Math., 322 (1996), 729-734. |
[14] |
D. Serre, Systems of Conservation Laws. 1, Cambridge University Press, Cambridge, 1999.
doi: 10.1017/CBO9780511612374. |
show all references
References:
[1] |
L. Ambrosio and C. De Lellis, A note on admissible solutions of 1d scalar conservation laws and 2d Hamilton-Jacobi equations, J. Hyperbolic Diff. Equ., 1 (2004), 813-826.
doi: 10.1142/S0219891604000263. |
[2] |
D. Amadori, Initial-boundary value problems for nonlinear systems of conservation laws, NoDEA Nonlinear Differential Equations Appl., 4 (1997), 1-42.
doi: 10.1007/PL00001406. |
[3] |
C. Bardos, A. Y. le Roux and J.-C. Nédélec, First order quasilinear equations with boundary conditions, Comm. Partial Differential Equations, 4 (1979), 1017-1034.
doi: 10.1080/03605307908820117. |
[4] |
G. Bellettini, L. Bertini, M. Mariani and M. Novaga, $\Gamma$-entropy cost for scalar conservation laws, Archive for Rational Mechanics and Analysis, 195 (2010), 261-309.
doi: 10.1007/s00205-008-0197-2. |
[5] |
S. Bianchini and L. Caravenna, SBV regularity for genuinely nonlinear, strictly hyperbolic systems of conservation laws in one space dimension, Communications in Mathematical Physics, 313 (2012), 1-33.
doi: 10.1007/s00220-012-1480-5. |
[6] |
S. Bianchini and L. Yu, Structure of entropy solutions to general scalar conservation laws in one space dimension, J. Math. Anal. Appl., 428 (2015), 356-386.
doi: 10.1016/j.jmaa.2015.03.006. |
[7] |
A. Bressan and P. G. LeFloch, Structural stability and regularity of entropy solutions to hyperbolic systems of conservation laws, Indiana Univ. Math. J., 48 (1999), 43-84.
doi: 10.1512/iumj.1999.48.1524. |
[8] |
A. Bressan, Hyperbolic Systems of Conservation Laws, Oxford Lecture Series in Mathematics and its Applications, vol. 20, Oxford University Press, Oxford, 2000. |
[9] |
C. M. Dafermos, Hyperbolic Conservation Laws in Continuum Physics, Third edition, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 325, Springer-Verlag, Berlin, 2010.
doi: 10.1007/978-3-642-04048-1. |
[10] |
S. N. Kružkov, First order quasilinear equations with several independent variables, Mat. Sb. (N.S.), 81 (1970), 228-255. |
[11] |
C. De Lellis, F. Otto and M. Westdickenberg, Structure of entropy solutions for multi-dimensional scalar conservation laws, Archive for Rational Mechanics and Analysis, 170 (2003), 137-184.
doi: 10.1007/s00205-003-0270-9. |
[12] |
C. De Lellis and T. Rivière, Concentration estimates for entropy measures, Journal de Mathématiques Pures et Appliquées, 82 (2003), 1343-1367.
doi: 10.1016/S0021-7824(03)00061-8. |
[13] |
F. Otto, Initial-boundary value problem for a scalar conservation law, C. R. Acad. Sci. Paris Sér. I Math., 322 (1996), 729-734. |
[14] |
D. Serre, Systems of Conservation Laws. 1, Cambridge University Press, Cambridge, 1999.
doi: 10.1017/CBO9780511612374. |
[1] |
Evgeny Yu. Panov. On a condition of strong precompactness and the decay of periodic entropy solutions to scalar conservation laws. Networks and Heterogeneous Media, 2016, 11 (2) : 349-367. doi: 10.3934/nhm.2016.11.349 |
[2] |
Young-Sam Kwon. On the well-posedness of entropy solutions for conservation laws with source terms. Discrete and Continuous Dynamical Systems, 2009, 25 (3) : 933-949. doi: 10.3934/dcds.2009.25.933 |
[3] |
Zhi-Qiang Shao. Lifespan of classical discontinuous solutions to the generalized nonlinear initial-boundary Riemann problem for hyperbolic conservation laws with small BV data: shocks and contact discontinuities. Communications on Pure and Applied Analysis, 2015, 14 (3) : 759-792. doi: 10.3934/cpaa.2015.14.759 |
[4] |
Eitan Tadmor. Perfect derivatives, conservative differences and entropy stable computation of hyperbolic conservation laws. Discrete and Continuous Dynamical Systems, 2016, 36 (8) : 4579-4598. doi: 10.3934/dcds.2016.36.4579 |
[5] |
Darko Mitrovic. New entropy conditions for scalar conservation laws with discontinuous flux. Discrete and Continuous Dynamical Systems, 2011, 30 (4) : 1191-1210. doi: 10.3934/dcds.2011.30.1191 |
[6] |
Gui-Qiang Chen, Monica Torres. On the structure of solutions of nonlinear hyperbolic systems of conservation laws. Communications on Pure and Applied Analysis, 2011, 10 (4) : 1011-1036. doi: 10.3934/cpaa.2011.10.1011 |
[7] |
C. M. Khalique, G. S. Pai. Conservation laws and invariant solutions for soil water equations. Conference Publications, 2003, 2003 (Special) : 477-481. doi: 10.3934/proc.2003.2003.477 |
[8] |
Boris P. Andreianov, Giuseppe Maria Coclite, Carlotta Donadello. Well-posedness for vanishing viscosity solutions of scalar conservation laws on a network. Discrete and Continuous Dynamical Systems, 2017, 37 (11) : 5913-5942. doi: 10.3934/dcds.2017257 |
[9] |
Fengbai Li, Feng Rong. Decay of solutions to fractal parabolic conservation laws with large initial data. Communications on Pure and Applied Analysis, 2013, 12 (2) : 973-984. doi: 10.3934/cpaa.2013.12.973 |
[10] |
Shijin Deng, Weike Wang. Pointwise estimates of solutions for the multi-dimensional scalar conservation laws with relaxation. Discrete and Continuous Dynamical Systems, 2011, 30 (4) : 1107-1138. doi: 10.3934/dcds.2011.30.1107 |
[11] |
Lijuan Wang, Weike Wang. Pointwise estimates of solutions to conservation laws with nonlocal dissipation-type terms. Communications on Pure and Applied Analysis, 2019, 18 (5) : 2835-2854. doi: 10.3934/cpaa.2019127 |
[12] |
Stephen C. Anco, Maria Luz Gandarias, Elena Recio. Conservation laws and line soliton solutions of a family of modified KP equations. Discrete and Continuous Dynamical Systems - S, 2020, 13 (10) : 2655-2665. doi: 10.3934/dcdss.2020225 |
[13] |
Avner Friedman. Conservation laws in mathematical biology. Discrete and Continuous Dynamical Systems, 2012, 32 (9) : 3081-3097. doi: 10.3934/dcds.2012.32.3081 |
[14] |
Mauro Garavello. A review of conservation laws on networks. Networks and Heterogeneous Media, 2010, 5 (3) : 565-581. doi: 10.3934/nhm.2010.5.565 |
[15] |
Len G. Margolin, Roy S. Baty. Conservation laws in discrete geometry. Journal of Geometric Mechanics, 2019, 11 (2) : 187-203. doi: 10.3934/jgm.2019010 |
[16] |
Mauro Garavello, Roberto Natalini, Benedetto Piccoli, Andrea Terracina. Conservation laws with discontinuous flux. Networks and Heterogeneous Media, 2007, 2 (1) : 159-179. doi: 10.3934/nhm.2007.2.159 |
[17] |
Wen-Xiu Ma. Conservation laws by symmetries and adjoint symmetries. Discrete and Continuous Dynamical Systems - S, 2018, 11 (4) : 707-721. doi: 10.3934/dcdss.2018044 |
[18] |
Tai-Ping Liu, Shih-Hsien Yu. Hyperbolic conservation laws and dynamic systems. Discrete and Continuous Dynamical Systems, 2000, 6 (1) : 143-145. doi: 10.3934/dcds.2000.6.143 |
[19] |
Yanbo Hu, Wancheng Sheng. The Riemann problem of conservation laws in magnetogasdynamics. Communications on Pure and Applied Analysis, 2013, 12 (2) : 755-769. doi: 10.3934/cpaa.2013.12.755 |
[20] |
K. T. Joseph, Philippe G. LeFloch. Boundary layers in weak solutions of hyperbolic conservation laws II. self-similar vanishing diffusion limits. Communications on Pure and Applied Analysis, 2002, 1 (1) : 51-76. doi: 10.3934/cpaa.2002.1.51 |
2020 Impact Factor: 2.425
Tools
Metrics
Other articles
by authors
[Back to Top]