April  2016, 9(2): 501-527. doi: 10.3934/dcdss.2016009

On the equilibria and qualitative dynamics of a forced nonlinear oscillator with contact and friction

1. 

Laboratoire de Mécanique et d'Acoustique, LMA, CNRS, UPR 7051, Aix-Marseille Univ., Centrale Marseille, F-13402 Marseille Cedex 20, France, France

Received  December 2014 Revised  October 2015 Published  March 2016

After previous works related to the equilibrium states, this paper goes deeper into the study of the effect of coupling between smooth and non-smooth non-linearities on the qualitative behavior of low dimensional dynamical systems. The non-smooth non-linearity is due to non-regularized unilateral contact and Coulomb friction while the smooth one is due to large strains of a simple mass spring system, which lead to a nonlinear restoring force. The main qualitative differences with the case of a linear restoring force are due to the shape of the set of equilibrium states.
Citation: Alain Léger, Elaine Pratt. On the equilibria and qualitative dynamics of a forced nonlinear oscillator with contact and friction. Discrete and Continuous Dynamical Systems - S, 2016, 9 (2) : 501-527. doi: 10.3934/dcdss.2016009
References:
[1]

S. Basseville, A. Léger and E. Pratt, Investigation of the equilibrium states and their stability for a simple model with unilateral contact and Coulomb friction, Arch. Appl. Mech., 73 (2003), 409-420. doi: 10.1007/s00419-003-0300-y.

[2]

Q. J. Cao, M. Wiercigroch, E. Pavvlovskaia, C. Grebogi, J. Thompson, An archetypal oscillator for smooth and discontinuous dynamics, Phys. Review, 74 (2006), 046218, 5pp. doi: 10.1103/PhysRevE.74.046218.

[3]

Q. J. Cao, A. Léger and Z. X. Li, The equilibrium stability of a smooth to discontinous oscillator with dry friction, J. of Computational and Nonlinear Dynamics, (2013).

[4]

A. Charles and P. Ballard, Existence and uniqueness of solution to dynamical unilateral contact problems with Coulomb friction: the case of a collection of points, Mathematical Modelling and Numerical Analysis, 48 (2014), 1-25. doi: 10.1051/m2an/2013092.

[5]

A. Cimetière and A. Léger, Some problems about elastic-plastic post-buckling, Int. J. Solids Structures, 32 (1996), 1519-1533.

[6]

M. Jean, The nonsmooth contact dynamics method, Computer Methods Appl. Mech. Engn, 177 (1999), 235-257. doi: 10.1016/S0045-7825(98)00383-1.

[7]

A. Klarbring, Examples of nonuniqueness and nonexistence of solutions to quasistatic contact problems with friction, Ing. Arch., 60 (1990), 529-541.

[8]

A. Léger and E. Pratt, Qualitative analysis of a forced nonsmooth oscillator with contact and friction, Annals of Solid and Structural Mechanics, 2 (2011), 1-17.

[9]

A. Léger, E. Pratt and Q. J. Cao, A fully nonlinear oscillator with contact and friction, Nonlinear Dynamics, 70 (2012), 511-522. doi: 10.1007/s11071-012-0471-6.

[10]

J. J. Moreau, Unilateral contact and dry friction in finite freedom dynamics, in Nonsmooth Mechanics and Applications (eds. J. J. Moreau and P. D. Panagiotopoulos), CISM Courses and Lectures, 302, Springer-Verlag, Vienne-New York, 1988, 1-82. doi: 10.1007/978-3-7091-2624-0_1.

show all references

References:
[1]

S. Basseville, A. Léger and E. Pratt, Investigation of the equilibrium states and their stability for a simple model with unilateral contact and Coulomb friction, Arch. Appl. Mech., 73 (2003), 409-420. doi: 10.1007/s00419-003-0300-y.

[2]

Q. J. Cao, M. Wiercigroch, E. Pavvlovskaia, C. Grebogi, J. Thompson, An archetypal oscillator for smooth and discontinuous dynamics, Phys. Review, 74 (2006), 046218, 5pp. doi: 10.1103/PhysRevE.74.046218.

[3]

Q. J. Cao, A. Léger and Z. X. Li, The equilibrium stability of a smooth to discontinous oscillator with dry friction, J. of Computational and Nonlinear Dynamics, (2013).

[4]

A. Charles and P. Ballard, Existence and uniqueness of solution to dynamical unilateral contact problems with Coulomb friction: the case of a collection of points, Mathematical Modelling and Numerical Analysis, 48 (2014), 1-25. doi: 10.1051/m2an/2013092.

[5]

A. Cimetière and A. Léger, Some problems about elastic-plastic post-buckling, Int. J. Solids Structures, 32 (1996), 1519-1533.

[6]

M. Jean, The nonsmooth contact dynamics method, Computer Methods Appl. Mech. Engn, 177 (1999), 235-257. doi: 10.1016/S0045-7825(98)00383-1.

[7]

A. Klarbring, Examples of nonuniqueness and nonexistence of solutions to quasistatic contact problems with friction, Ing. Arch., 60 (1990), 529-541.

[8]

A. Léger and E. Pratt, Qualitative analysis of a forced nonsmooth oscillator with contact and friction, Annals of Solid and Structural Mechanics, 2 (2011), 1-17.

[9]

A. Léger, E. Pratt and Q. J. Cao, A fully nonlinear oscillator with contact and friction, Nonlinear Dynamics, 70 (2012), 511-522. doi: 10.1007/s11071-012-0471-6.

[10]

J. J. Moreau, Unilateral contact and dry friction in finite freedom dynamics, in Nonsmooth Mechanics and Applications (eds. J. J. Moreau and P. D. Panagiotopoulos), CISM Courses and Lectures, 302, Springer-Verlag, Vienne-New York, 1988, 1-82. doi: 10.1007/978-3-7091-2624-0_1.

[1]

Rafael del Rio, Mikhail Kudryavtsev, Luis O. Silva. Inverse problems for Jacobi operators III: Mass-spring perturbations of semi-infinite systems. Inverse Problems and Imaging, 2012, 6 (4) : 599-621. doi: 10.3934/ipi.2012.6.599

[2]

Philippe Pécol, Pierre Argoul, Stefano Dal Pont, Silvano Erlicher. The non-smooth view for contact dynamics by Michel Frémond extended to the modeling of crowd movements. Discrete and Continuous Dynamical Systems - S, 2013, 6 (2) : 547-565. doi: 10.3934/dcdss.2013.6.547

[3]

Gero Friesecke, Karsten Matthies. Geometric solitary waves in a 2D mass-spring lattice. Discrete and Continuous Dynamical Systems - B, 2003, 3 (1) : 105-114. doi: 10.3934/dcdsb.2003.3.105

[4]

Leszek Gasiński, Piotr Kalita. On dynamic contact problem with generalized Coulomb friction, normal compliance and damage. Evolution Equations and Control Theory, 2020, 9 (4) : 1009-1026. doi: 10.3934/eect.2020049

[5]

Yangjian Sun, Changjian Liu. The Poincaré bifurcation of a SD oscillator. Discrete and Continuous Dynamical Systems - B, 2021, 26 (3) : 1565-1577. doi: 10.3934/dcdsb.2020173

[6]

Yanni Xiao, Tingting Zhao, Sanyi Tang. Dynamics of an infectious diseases with media/psychology induced non-smooth incidence. Mathematical Biosciences & Engineering, 2013, 10 (2) : 445-461. doi: 10.3934/mbe.2013.10.445

[7]

Hongwei Lou, Junjie Wen, Yashan Xu. Time optimal control problems for some non-smooth systems. Mathematical Control and Related Fields, 2014, 4 (3) : 289-314. doi: 10.3934/mcrf.2014.4.289

[8]

Mikhail I. Belishev, Aleksei F. Vakulenko. Non-smooth unobservable states in control problem for the wave equation in $\mathbb{R}^3$. Evolution Equations and Control Theory, 2014, 3 (2) : 247-256. doi: 10.3934/eect.2014.3.247

[9]

Paul Glendinning. Non-smooth pitchfork bifurcations. Discrete and Continuous Dynamical Systems - B, 2004, 4 (2) : 457-464. doi: 10.3934/dcdsb.2004.4.457

[10]

Suzete Maria Afonso, Vanessa Ramos, Jaqueline Siqueira. Equilibrium states for non-uniformly hyperbolic systems: Statistical properties and analyticity. Discrete and Continuous Dynamical Systems, 2021, 41 (9) : 4485-4513. doi: 10.3934/dcds.2021045

[11]

Luis Bayón, Jose Maria Grau, Maria del Mar Ruiz, Pedro Maria Suárez. A hydrothermal problem with non-smooth Lagrangian. Journal of Industrial and Management Optimization, 2014, 10 (3) : 761-776. doi: 10.3934/jimo.2014.10.761

[12]

Alessandro Colombo, Nicoletta Del Buono, Luciano Lopez, Alessandro Pugliese. Computational techniques to locate crossing/sliding regions and their sets of attraction in non-smooth dynamical systems. Discrete and Continuous Dynamical Systems - B, 2018, 23 (7) : 2911-2934. doi: 10.3934/dcdsb.2018166

[13]

Peter Giesl. Necessary condition for the basin of attraction of a periodic orbit in non-smooth periodic systems. Discrete and Continuous Dynamical Systems, 2007, 18 (2&3) : 355-373. doi: 10.3934/dcds.2007.18.355

[14]

Giuseppe Tomassetti. Smooth and non-smooth regularizations of the nonlinear diffusion equation. Discrete and Continuous Dynamical Systems - S, 2017, 10 (6) : 1519-1537. doi: 10.3934/dcdss.2017078

[15]

Nurullah Yilmaz, Ahmet Sahiner. On a new smoothing technique for non-smooth, non-convex optimization. Numerical Algebra, Control and Optimization, 2020, 10 (3) : 317-330. doi: 10.3934/naco.2020004

[16]

Nicola Gigli, Sunra Mosconi. The Abresch-Gromoll inequality in a non-smooth setting. Discrete and Continuous Dynamical Systems, 2014, 34 (4) : 1481-1509. doi: 10.3934/dcds.2014.34.1481

[17]

Deepak Singh, Bilal Ahmad Dar, Do Sang Kim. Sufficiency and duality in non-smooth interval valued programming problems. Journal of Industrial and Management Optimization, 2019, 15 (2) : 647-665. doi: 10.3934/jimo.2018063

[18]

Constantin Christof, Christian Meyer, Stephan Walther, Christian Clason. Optimal control of a non-smooth semilinear elliptic equation. Mathematical Control and Related Fields, 2018, 8 (1) : 247-276. doi: 10.3934/mcrf.2018011

[19]

Salvatore A. Marano, Sunra Mosconi. Non-smooth critical point theory on closed convex sets. Communications on Pure and Applied Analysis, 2014, 13 (3) : 1187-1202. doi: 10.3934/cpaa.2014.13.1187

[20]

Jianhua Huang, Wenxian Shen. Pullback attractors for nonautonomous and random parabolic equations on non-smooth domains. Discrete and Continuous Dynamical Systems, 2009, 24 (3) : 855-882. doi: 10.3934/dcds.2009.24.855

2021 Impact Factor: 1.865

Metrics

  • PDF downloads (158)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]