Advanced Search
Article Contents
Article Contents

Kinematical structural stability

Abstract Related Papers Cited by
  • This paper gives an overview of our results obtained from 2009 until 2014 about paradoxical stability properties of non conservative systems which lead to the concept of Kinematical Structural Stability (Ki.s.s.). Due to Fischer-Courant results, this ki.s.s. is universal for conservative systems whereas new interesting situations may arise for non conservative ones. A remarkable algebraic property of the symmetric part of linear operators may generalize this result for divergence stability but leading only to a conditional ki.s.s. By duality, the concept of geometric degree of nonconservativity is highlighting. Paradigmatic examples of Ziegler systems illustrate the general results and their effectiveness.
    Mathematics Subject Classification: Primary: 34D30, 37C20; Secondary: 47A20.


    \begin{equation} \\ \end{equation}
  • [1]

    D. Bigoni and G. Noselli, Experimental evidence of flutter and divergence instabilities induced by dry friction, Journal of the Mechanics and Physics of Solids, 59 (2011), 2208-2226.doi: 10.1016/j.jmps.2011.05.007.


    V. V. Bolotin, Non-conservative Problems of the Theory of Elastic Stability, Pergamon Press, 1963.


    N. Challamel, F. Nicot, J. Lerbet and F. Darve, Stability of non-conservative elastic structures under additional kinematics constraints, Engineering Structures, 32 (2010), 3086-3092.doi: 10.1016/j.engstruct.2010.05.027.


    K. E. Gustafson and D. K. M. Rao, Numerical Range. The field of Values of Linear Operators and Matrices, Universitext, Springer, 1997.doi: 10.1007/978-1-4613-8498-4.


    R. Hill, A general theory of uniqueness and stability in elastic-plastic solids, Journal of the Mechanics and Physics of Solids, 6 (1958), 236-249.doi: 10.1016/0022-5096(58)90029-2.


    R. Hill, Some basic principles in the mechanics of solids without a natural time, J. Mech. Phys. Solids, 7 (1959), 209-225.doi: 10.1016/0022-5096(59)90007-9.


    O. N. Kirillov and F. Verhulst, Paradoxes of dissipation-induced destabilization or who opened Withney's umbrella?, Z. Angew.Math. Mech., 90 (2010), 462-488.doi: 10.1002/zamm.200900315.


    J. Lerbet, M. Aldowaji, N. Challamel, F. Nicot, F. Prunier and F. Darve, P-positive definite matrices and stability of nonconservative systems, Z. Angew. Math. Mech., 92 (2012), 409-422.doi: 10.1002/zamm.201100055.


    J. Lerbet, M. Aldowaji, N. Challamel, F. Nicot, O. Kirillov and F. Darve, Geometric degree of nonconservativity, Math. and Mech. of Complex Systems, 2 (2014), 123-139.doi: 10.2140/memocs.2014.2.123.


    T. Tarnai, Paradoxical behaviour of vibrating systems challenging Rayleigh's theorem, 21st International Congress of Theoretical and Applied Mechanics, Warsaw, 2004.


    J. M. T. Thompson, 'Paradoxical' mechanics under fluid flow, Nature, 296 (1982), 135-137.doi: 10.1038/296135a0.

  • 加载中

Article Metrics

HTML views() PDF downloads(204) Cited by(0)

Access History



    DownLoad:  Full-Size Img  PowerPoint