• Previous Article
    Cellular instabilities analyzed by multi-scale Fourier series: A review
  • DCDS-S Home
  • This Issue
  • Next Article
    Analysis of an iterative scheme of fractional steps type associated to the nonlinear phase-field equation with non-homogeneous dynamic boundary conditions
April  2016, 9(2): 557-584. doi: 10.3934/dcdss.2016012

Stress gradient effects on the nucleation and propagation of cohesive cracks

1. 

CNRS, Ecole Polytechnique, Laboratoire de Mécanique des Solides, (UMR 7649), F-91128 Palaiseau Cedex, France, France

2. 

Institute of Mechanical Sciences and Industrial Applications, (UMR EDF-CNRS-CEA-ENSTA Paristech 9219), 92141 Clamart, France

Received  May 2015 Revised  November 2015 Published  March 2016

The aim of the present work is to study the nucleation and propagation of cohesive cracks in two-dimensional elastic structures. The crack evolution is governed by Dugdale's cohesive force model. Specifically, we investigate the stabilizing effect of the stress field non-uniformity by introducing a length $l$ which characterizes the stress gradient in a neighborhood of the point where the crack nucleates. We distinguish two stages in the crack evolution: the first one where the entire crack is submitted to cohesive forces, followed by a second one where a non-cohesive part appears. Assuming that the material characteristic length $d_c$ associated with Dugdale's model is small in comparison with the dimension $L$ of the body, we develop a two-scale approach and, using the methods of complex analysis, obtain the entire crack evolution with the loading in closed form. In particular, we show that the propagation is stable during the first stage, but becomes unstable with a brutal crack length jump as soon as the non-cohesive crack part appears. We also discuss the influence of the problem parameters and study the sensitivity to imperfections.
Citation: Tuan Hiep Pham, Jérôme Laverne, Jean-Jacques Marigo. Stress gradient effects on the nucleation and propagation of cohesive cracks. Discrete & Continuous Dynamical Systems - S, 2016, 9 (2) : 557-584. doi: 10.3934/dcdss.2016012
References:
[1]

Comptes Rendus Mécanique, 337 (2009), 166-172. doi: 10.1016/j.crme.2009.04.002.  Google Scholar

[2]

Comptes Rendus Mécanique, 337 (2009), 53-59. doi: 10.1016/j.crme.2008.12.001.  Google Scholar

[3]

Annals of Solid and Structural Mechanics, 1 (2010), 139-158. doi: 10.1007/s12356-010-0011-3.  Google Scholar

[4]

Adv. Appl. Mech., 7 (1962), 55-129.  Google Scholar

[5]

J. Elasticity, 91 (2008), 5-148. doi: 10.1007/s10659-007-9107-3.  Google Scholar

[6]

Masson, 1978. Google Scholar

[7]

cmt, 20 (2008), 1-19. doi: 10.1007/s00161-008-0071-3.  Google Scholar

[8]

Symposium on Continuous Damage and Fracture, (2000). Google Scholar

[9]

Eur. J. Mech. A/Solids, 25 (2006), 649-669. doi: 10.1016/j.euromechsol.2006.05.002.  Google Scholar

[10]

Key Engineering Materials, 525-526 (2013), 489-492. doi: 10.4028/www.scientific.net/KEM.525-526.489.  Google Scholar

[11]

Mathematics and Mechanics of Complex Systems, 2 (2014), 141-179. doi: 10.2140/memocs.2014.2.141.  Google Scholar

[12]

P. Argoul, M. Frémond (Eds.), Proceedings of IUTAM Symposium Variations de domaines et frontières libres en mécanique, Paris, 1997, Kluwer Academic, 6 (1999), 203-210. doi: 10.1007/978-94-011-4738-5_24.  Google Scholar

[13]

Eur. J. Mech. A/Solids, 29 (2010), 496-507. doi: 10.1016/j.euromechsol.2010.02.004.  Google Scholar

[14]

J. Mech. Phys. Solids, 8 (1960), 100-104. doi: 10.1016/0022-5096(60)90013-2.  Google Scholar

[15]

Comptes Rendus Mècanique, 335 (2007), 708-713. doi: 10.1016/j.crme.2007.07.003.  Google Scholar

[16]

Continuum Mech. Thermodyn, 19 (2007), 191-210. doi: 10.1007/s00161-007-0051-z.  Google Scholar

[17]

Continuum Mech. Thermodyn, 21 (2009), 41-55. doi: 10.1007/s00161-009-0098-0.  Google Scholar

[18]

SIAM J. Math. Anal., 36 (2005), 1887-1928. doi: 10.1137/S0036141004439362.  Google Scholar

[19]

Philos. Trans. Roy. Soc. London, 221 (1921), 582-593. doi: 10.1098/rsta.1921.0006.  Google Scholar

[20]

Pitman - Monographs and Studies in Mathematics, 1985. Google Scholar

[21]

Continuum Mech. Thermodyn., 18 (2006), 23-45. doi: 10.1007/s00161-006-0023-8.  Google Scholar

[22]

Computational Materials Science, 16 (1999), 267-274. doi: 10.1016/S0927-0256(99)00069-5.  Google Scholar

[23]

Comptes Rendus Mecanique, 332 (2004), 313-318. Google Scholar

[24]

International Journal of Fracture, 175 (2012), 127-150. doi: 10.1007/s10704-012-9708-0.  Google Scholar

[25]

Comput. Methods Appl. Mech. Engrg., 198 (2008), 302-317. doi: 10.1016/j.cma.2008.08.006.  Google Scholar

[26]

Continuum Mech. Thermodyn, 16 (2004), 391-409. doi: 10.1007/s00161-003-0164-y.  Google Scholar

[27]

P. Noordhoff Ltd, Groningen, 1963.  Google Scholar

[28]

Ultramicroscopy, 40 (1992). Google Scholar

[29]

Int. J. Fract., 110 (2001), 351-369. Google Scholar

[30]

The Trend in Engineering, 13 (1961), 9-14. Google Scholar

[31]

Eng. Fract. Mech., 70 (2003), 209-232. doi: 10.1016/S0013-7944(02)00034-6.  Google Scholar

[32]

Eur. J. Mech. A/Solids, 22 (2003), 545-565. doi: 10.1016/S0997-7538(03)00046-9.  Google Scholar

[33]

Mat. Sci. Eng. A, 125 (1990), 203-213. Google Scholar

[34]

J. Mech. Phys. Solids, 15 (1967), 151-162. doi: 10.1016/0022-5096(67)90029-4.  Google Scholar

show all references

References:
[1]

Comptes Rendus Mécanique, 337 (2009), 166-172. doi: 10.1016/j.crme.2009.04.002.  Google Scholar

[2]

Comptes Rendus Mécanique, 337 (2009), 53-59. doi: 10.1016/j.crme.2008.12.001.  Google Scholar

[3]

Annals of Solid and Structural Mechanics, 1 (2010), 139-158. doi: 10.1007/s12356-010-0011-3.  Google Scholar

[4]

Adv. Appl. Mech., 7 (1962), 55-129.  Google Scholar

[5]

J. Elasticity, 91 (2008), 5-148. doi: 10.1007/s10659-007-9107-3.  Google Scholar

[6]

Masson, 1978. Google Scholar

[7]

cmt, 20 (2008), 1-19. doi: 10.1007/s00161-008-0071-3.  Google Scholar

[8]

Symposium on Continuous Damage and Fracture, (2000). Google Scholar

[9]

Eur. J. Mech. A/Solids, 25 (2006), 649-669. doi: 10.1016/j.euromechsol.2006.05.002.  Google Scholar

[10]

Key Engineering Materials, 525-526 (2013), 489-492. doi: 10.4028/www.scientific.net/KEM.525-526.489.  Google Scholar

[11]

Mathematics and Mechanics of Complex Systems, 2 (2014), 141-179. doi: 10.2140/memocs.2014.2.141.  Google Scholar

[12]

P. Argoul, M. Frémond (Eds.), Proceedings of IUTAM Symposium Variations de domaines et frontières libres en mécanique, Paris, 1997, Kluwer Academic, 6 (1999), 203-210. doi: 10.1007/978-94-011-4738-5_24.  Google Scholar

[13]

Eur. J. Mech. A/Solids, 29 (2010), 496-507. doi: 10.1016/j.euromechsol.2010.02.004.  Google Scholar

[14]

J. Mech. Phys. Solids, 8 (1960), 100-104. doi: 10.1016/0022-5096(60)90013-2.  Google Scholar

[15]

Comptes Rendus Mècanique, 335 (2007), 708-713. doi: 10.1016/j.crme.2007.07.003.  Google Scholar

[16]

Continuum Mech. Thermodyn, 19 (2007), 191-210. doi: 10.1007/s00161-007-0051-z.  Google Scholar

[17]

Continuum Mech. Thermodyn, 21 (2009), 41-55. doi: 10.1007/s00161-009-0098-0.  Google Scholar

[18]

SIAM J. Math. Anal., 36 (2005), 1887-1928. doi: 10.1137/S0036141004439362.  Google Scholar

[19]

Philos. Trans. Roy. Soc. London, 221 (1921), 582-593. doi: 10.1098/rsta.1921.0006.  Google Scholar

[20]

Pitman - Monographs and Studies in Mathematics, 1985. Google Scholar

[21]

Continuum Mech. Thermodyn., 18 (2006), 23-45. doi: 10.1007/s00161-006-0023-8.  Google Scholar

[22]

Computational Materials Science, 16 (1999), 267-274. doi: 10.1016/S0927-0256(99)00069-5.  Google Scholar

[23]

Comptes Rendus Mecanique, 332 (2004), 313-318. Google Scholar

[24]

International Journal of Fracture, 175 (2012), 127-150. doi: 10.1007/s10704-012-9708-0.  Google Scholar

[25]

Comput. Methods Appl. Mech. Engrg., 198 (2008), 302-317. doi: 10.1016/j.cma.2008.08.006.  Google Scholar

[26]

Continuum Mech. Thermodyn, 16 (2004), 391-409. doi: 10.1007/s00161-003-0164-y.  Google Scholar

[27]

P. Noordhoff Ltd, Groningen, 1963.  Google Scholar

[28]

Ultramicroscopy, 40 (1992). Google Scholar

[29]

Int. J. Fract., 110 (2001), 351-369. Google Scholar

[30]

The Trend in Engineering, 13 (1961), 9-14. Google Scholar

[31]

Eng. Fract. Mech., 70 (2003), 209-232. doi: 10.1016/S0013-7944(02)00034-6.  Google Scholar

[32]

Eur. J. Mech. A/Solids, 22 (2003), 545-565. doi: 10.1016/S0997-7538(03)00046-9.  Google Scholar

[33]

Mat. Sci. Eng. A, 125 (1990), 203-213. Google Scholar

[34]

J. Mech. Phys. Solids, 15 (1967), 151-162. doi: 10.1016/0022-5096(67)90029-4.  Google Scholar

[1]

Zhuoqin Yang, Tingting Guan. Bifurcation analysis of complex bursting induced by two different time-scale slow variables. Conference Publications, 2011, 2011 (Special) : 1440-1447. doi: 10.3934/proc.2011.2011.1440

[2]

G. Leugering, Marina Prechtel, Paul Steinmann, Michael Stingl. A cohesive crack propagation model: Mathematical theory and numerical solution. Communications on Pure & Applied Analysis, 2013, 12 (4) : 1705-1729. doi: 10.3934/cpaa.2013.12.1705

[3]

Junyuan Yang, Yuming Chen, Jiming Liu. Stability analysis of a two-strain epidemic model on complex networks with latency. Discrete & Continuous Dynamical Systems - B, 2016, 21 (8) : 2851-2866. doi: 10.3934/dcdsb.2016076

[4]

Zhenquan Zhang, Meiling Chen, Jiajun Zhang, Tianshou Zhou. Analysis of non-Markovian effects in generalized birth-death models. Discrete & Continuous Dynamical Systems - B, 2021, 26 (7) : 3717-3735. doi: 10.3934/dcdsb.2020254

[5]

Gianni Dal Maso, Giuliano Lazzaroni. Crack growth with non-interpenetration: A simplified proof for the pure Neumann problem. Discrete & Continuous Dynamical Systems, 2011, 31 (4) : 1219-1231. doi: 10.3934/dcds.2011.31.1219

[6]

Roger E. Khayat, Martin Ostoja-Starzewski. On the objective rate of heat and stress fluxes. Connection with micro/nano-scale heat convection. Discrete & Continuous Dynamical Systems - B, 2011, 15 (4) : 991-998. doi: 10.3934/dcdsb.2011.15.991

[7]

Baskar Sundaravadivoo. Controllability analysis of nonlinear fractional order differential systems with state delay and non-instantaneous impulsive effects. Discrete & Continuous Dynamical Systems - S, 2020, 13 (9) : 2561-2573. doi: 10.3934/dcdss.2020138

[8]

V. Torri. Numerical and dynamical analysis of undulation instability under shear stress. Discrete & Continuous Dynamical Systems - B, 2005, 5 (2) : 423-460. doi: 10.3934/dcdsb.2005.5.423

[9]

Binjie Li, Xiaoping Xie, Shiquan Zhang. New convergence analysis for assumed stress hybrid quadrilateral finite element method. Discrete & Continuous Dynamical Systems - B, 2017, 22 (7) : 2831-2856. doi: 10.3934/dcdsb.2017153

[10]

Alexandre Caboussat, Roland Glowinski. Numerical solution of a variational problem arising in stress analysis: The vector case. Discrete & Continuous Dynamical Systems, 2010, 27 (4) : 1447-1472. doi: 10.3934/dcds.2010.27.1447

[11]

Nurullah Yilmaz, Ahmet Sahiner. On a new smoothing technique for non-smooth, non-convex optimization. Numerical Algebra, Control & Optimization, 2020, 10 (3) : 317-330. doi: 10.3934/naco.2020004

[12]

Joseph J Kohn. Nirenberg's contributions to complex analysis. Discrete & Continuous Dynamical Systems, 2011, 30 (2) : 537-545. doi: 10.3934/dcds.2011.30.537

[13]

Bilal Saad, Mazen Saad. Numerical analysis of a non equilibrium two-component two-compressible flow in porous media. Discrete & Continuous Dynamical Systems - S, 2014, 7 (2) : 317-346. doi: 10.3934/dcdss.2014.7.317

[14]

Yong-Jung Kim. A generalization of the moment problem to a complex measure space and an approximation technique using backward moments. Discrete & Continuous Dynamical Systems, 2011, 30 (1) : 187-207. doi: 10.3934/dcds.2011.30.187

[15]

Bangxin Jiang, Bowen Li, Jianquan Lu. Complex systems with impulsive effects and logical dynamics: A brief overview. Discrete & Continuous Dynamical Systems - S, 2021, 14 (4) : 1273-1299. doi: 10.3934/dcdss.2020369

[16]

Victor Isakov, Nanhee Kim. Weak Carleman estimates with two large parameters for second order operators and applications to elasticity with residual stress. Discrete & Continuous Dynamical Systems, 2010, 27 (2) : 799-825. doi: 10.3934/dcds.2010.27.799

[17]

Yunfeng Jia, Jianhua Wu, Hong-Kun Xu. On qualitative analysis for a two competing fish species model with a combined non-selective harvesting effort in the presence of toxicity. Communications on Pure & Applied Analysis, 2013, 12 (5) : 1927-1941. doi: 10.3934/cpaa.2013.12.1927

[18]

Marion Weedermann. Analysis of a model for the effects of an external toxin on anaerobic digestion. Mathematical Biosciences & Engineering, 2012, 9 (2) : 445-459. doi: 10.3934/mbe.2012.9.445

[19]

Muhammad Mansha Ghalib, Azhar Ali Zafar, Zakia Hammouch, Muhammad Bilal Riaz, Khurram Shabbir. Analytical results on the unsteady rotational flow of fractional-order non-Newtonian fluids with shear stress on the boundary. Discrete & Continuous Dynamical Systems - S, 2020, 13 (3) : 683-693. doi: 10.3934/dcdss.2020037

[20]

L. Chupin. Existence result for a mixture of non Newtonian flows with stress diffusion using the Cahn-Hilliard formulation. Discrete & Continuous Dynamical Systems - B, 2003, 3 (1) : 45-68. doi: 10.3934/dcdsb.2003.3.45

2019 Impact Factor: 1.233

Metrics

  • PDF downloads (51)
  • HTML views (0)
  • Cited by (0)

[Back to Top]