June  2016, 9(3): 687-696. doi: 10.3934/dcdss.2016022

Identification problem for a degenerate evolution equation with overdetermination on the solution semigroup kernel

1. 

Chelyabinsk State University, Laboratory of Quantum Topology, 129 Kashirin Brothers Str., Chelyabinsk, 454001, Russian Federation

2. 

Chelyabinsk State University, 129 Kashirin Brothers Str., Chelyabinsk, 454001, Russian Federation

Received  February 2015 Revised  July 2015 Published  April 2016

An identification problem is considered for a degenerate evolution equation with overdetermination on the solution semigroup kernel. Solutions of problems with Cauchy and Showalter conditions on initial values are proved to be existing and unique. Solutions stability estimates are derived. The abstract results are applied to an identification problem for the linearized Oskolkov system of equations. There are considered different degrees of system degeneration with respect to the time derivatives of unknown functions.
Citation: Vladimir E. Fedorov, Natalia D. Ivanova. Identification problem for a degenerate evolution equation with overdetermination on the solution semigroup kernel. Discrete and Continuous Dynamical Systems - S, 2016, 9 (3) : 687-696. doi: 10.3934/dcdss.2016022
References:
[1]

N. L. Abasheeva, Determination of a right-hand side term in an operator-differential equation of mixed type, J. Inverse Ill-Posed Probl., 10 (2002), 547-560. doi: 10.1515/jiip.2002.10.6.547.

[2]

M. Al Horani and A. Favini, An identification problem for first-order degenerate differential equations, J. Optim Theory Appl., 130 (2006), 41-60. doi: 10.1007/s10957-006-9083-y.

[3]

M. Al Horani and A. Favini, Degenerate first-order inverse problems in Banach spaces, Nonlinear Anal., 75 (2012), 68-77. doi: 10.1016/j.na.2011.08.001.

[4]

G. V. Demidenko and S. V. Uspenskii, Partial Differential Equations and Systems not Solvable with Respect to the Highest-Order Derivative, Marcel Dekker, New York, Basel, 2003. doi: 10.1201/9780203911433.

[5]

A. Favini and A. Yagi, Degenerate Differential Equations in Banach Spaces, Marcel Dekker, New York, 1999.

[6]

V. E. Fedorov, Linear equations of the Sobolev type with relatively $p$-radial operators, Dokl. Akad. Nauk, 351 (1996), 316-318.

[7]

V. E. Fedorov, Degenerate strongly continuous semigroups of operators, St. Petersburgh. Math. J., 12 (2001), 471-489.

[8]

V. E. Fedorov, A generalization of the Hille-Yosida theorem to the case of degenerate semigroups in locally convex spaces, Siberian Math. J., 46 (2005), 333-350. doi: 10.1007/s11202-005-0035-9.

[9]

V. E. Fedorov, Svoistva psevdoresolvent i usloviya sushchestvovaniya vyrozhdennoi polugruppy operatorov, (Russian) [Pseudoresolvent properties and a degenerate operator semigroup existence conditions], Vestnik Chelyab. gos. universiteta. Matematika. Mekhanika. Informatika, 11 (2009), 12-19, 153.

[10]

N. D. Ivanova, Inverse problem for a linearized quasi-stationary phase field model with degeneracy, Vestnik Yuzhno-Ural'skogo gos. universiteta. Mat. modelirovanie i programmirovanie, 6 (2013), 128-133.

[11]

N. D. Ivanova, V. E. Fedorov and K. M. Komarova, Nelineinaya obratnaya zadacha dlya sistemy Oskolkova, linearizovannoy v okrestnosti statsionarnogo resheniya, (Russian) [Nonlinear inverse problem for the Oskolkov system, linearized in a stationary solution neighbourhood], Vestnik Chelyab. gos. universiteta. Matematika. Mechanika. Informatika, 13 (2012), 50-71.

[12]

A. I. Kozhanov, Lineinye obratnye zadachi dlya odnogo klassa vyrozhdayushchikhsya uravneniy sobolevskogo tipa (Russian) [Linear inverse problem for a class of degenerate Sobolev type equations], Vestnik Yuzhno-Ural'skogo gos. universiteta. Mat. modelirovanie i programmirovanie, 5 (2012), 33-42.

[13]

O. A. Ladyzhenskaya, The Mathematical Theory of Viscous Incompressible Flow, New York-London-Paris: Gordon and Breach, Science Publishers, 1969.

[14]

A. P. Oskolkov, Nachal'no-kraevye zadachi dlya uravneniy dvizheniya zhidkostei Kel'vina-Foigta i zhidkostei Oldroita, (Russian) [Initial-boundary value problems for equations of Kelvin-Voight and Oldroyd fluids motion], Trudy Mat. instituta AN SSSR, 179 (1988), 126-164.

[15]

M. V. Plekhanova and V. E. Fedorov, Optimal'noe Upravlenie Vyrozhdennymi Raspredelennymi Sistemami, (Russian) [Optimal Control for Degenerate Distributed Systems], Publishing Center of South Ural State University, Chelyabinsk, 2013.

[16]

A. I. Prilepko, D. G. Orlovskiy and I. A. Vasin, Methods for Solving Inverse Problems in Mathematical Physics, Marcel Dekker, New York, 2000.

[17]

A. G. Sveshnikov, A. B. Al'shin, M. O. Korpusov and Yu. D. Pletner, Lineinye i Nelineinye Uravneniya Sobolevskogo Tipa, (Russian) [Linear and Nonlinear Equations of the Sobolev Type], Fizmatlit, Moscow, 2007.

[18]

A. V. Urazaeva and V. E. Fedorov, An inverse problem for linear Sobolev type equations, J. Inverse Ill-Posed Probl., 12 (2004), 387-395. doi: 10.1515/1569394042248210.

[19]

A. V. Urazaeva and V. E. Fedorov, Prediction-control problem for some systems of equations of fluid dynamics, Differ. Equ., 44 (2008), 1147-1156. doi: 10.1134/S0012266108080120.

[20]

A. V. Urazaeva and V. E. Fedorov, On the well-posedness of the prediction-control problem for some systems of equations, Math. Notes, 85 (2009), 426-436. doi: 10.1134/S0001434609030134.

[21]

A. V. Urazaeva and V. E. Fedorov, Lineinaya evolutsionnaya obratnaya zadacha dlya uravnenii sobolevskogo tipa, (Russian) [Linear evolutionary inverse problem for Sobolev type equations], in Neklassicheskie uravnenia matematicheskoi fiziki (ed. A.I. Kozhanov), Sobolev Institute of Mathematics of the SB RAS, (2010), 293-310.

show all references

References:
[1]

N. L. Abasheeva, Determination of a right-hand side term in an operator-differential equation of mixed type, J. Inverse Ill-Posed Probl., 10 (2002), 547-560. doi: 10.1515/jiip.2002.10.6.547.

[2]

M. Al Horani and A. Favini, An identification problem for first-order degenerate differential equations, J. Optim Theory Appl., 130 (2006), 41-60. doi: 10.1007/s10957-006-9083-y.

[3]

M. Al Horani and A. Favini, Degenerate first-order inverse problems in Banach spaces, Nonlinear Anal., 75 (2012), 68-77. doi: 10.1016/j.na.2011.08.001.

[4]

G. V. Demidenko and S. V. Uspenskii, Partial Differential Equations and Systems not Solvable with Respect to the Highest-Order Derivative, Marcel Dekker, New York, Basel, 2003. doi: 10.1201/9780203911433.

[5]

A. Favini and A. Yagi, Degenerate Differential Equations in Banach Spaces, Marcel Dekker, New York, 1999.

[6]

V. E. Fedorov, Linear equations of the Sobolev type with relatively $p$-radial operators, Dokl. Akad. Nauk, 351 (1996), 316-318.

[7]

V. E. Fedorov, Degenerate strongly continuous semigroups of operators, St. Petersburgh. Math. J., 12 (2001), 471-489.

[8]

V. E. Fedorov, A generalization of the Hille-Yosida theorem to the case of degenerate semigroups in locally convex spaces, Siberian Math. J., 46 (2005), 333-350. doi: 10.1007/s11202-005-0035-9.

[9]

V. E. Fedorov, Svoistva psevdoresolvent i usloviya sushchestvovaniya vyrozhdennoi polugruppy operatorov, (Russian) [Pseudoresolvent properties and a degenerate operator semigroup existence conditions], Vestnik Chelyab. gos. universiteta. Matematika. Mekhanika. Informatika, 11 (2009), 12-19, 153.

[10]

N. D. Ivanova, Inverse problem for a linearized quasi-stationary phase field model with degeneracy, Vestnik Yuzhno-Ural'skogo gos. universiteta. Mat. modelirovanie i programmirovanie, 6 (2013), 128-133.

[11]

N. D. Ivanova, V. E. Fedorov and K. M. Komarova, Nelineinaya obratnaya zadacha dlya sistemy Oskolkova, linearizovannoy v okrestnosti statsionarnogo resheniya, (Russian) [Nonlinear inverse problem for the Oskolkov system, linearized in a stationary solution neighbourhood], Vestnik Chelyab. gos. universiteta. Matematika. Mechanika. Informatika, 13 (2012), 50-71.

[12]

A. I. Kozhanov, Lineinye obratnye zadachi dlya odnogo klassa vyrozhdayushchikhsya uravneniy sobolevskogo tipa (Russian) [Linear inverse problem for a class of degenerate Sobolev type equations], Vestnik Yuzhno-Ural'skogo gos. universiteta. Mat. modelirovanie i programmirovanie, 5 (2012), 33-42.

[13]

O. A. Ladyzhenskaya, The Mathematical Theory of Viscous Incompressible Flow, New York-London-Paris: Gordon and Breach, Science Publishers, 1969.

[14]

A. P. Oskolkov, Nachal'no-kraevye zadachi dlya uravneniy dvizheniya zhidkostei Kel'vina-Foigta i zhidkostei Oldroita, (Russian) [Initial-boundary value problems for equations of Kelvin-Voight and Oldroyd fluids motion], Trudy Mat. instituta AN SSSR, 179 (1988), 126-164.

[15]

M. V. Plekhanova and V. E. Fedorov, Optimal'noe Upravlenie Vyrozhdennymi Raspredelennymi Sistemami, (Russian) [Optimal Control for Degenerate Distributed Systems], Publishing Center of South Ural State University, Chelyabinsk, 2013.

[16]

A. I. Prilepko, D. G. Orlovskiy and I. A. Vasin, Methods for Solving Inverse Problems in Mathematical Physics, Marcel Dekker, New York, 2000.

[17]

A. G. Sveshnikov, A. B. Al'shin, M. O. Korpusov and Yu. D. Pletner, Lineinye i Nelineinye Uravneniya Sobolevskogo Tipa, (Russian) [Linear and Nonlinear Equations of the Sobolev Type], Fizmatlit, Moscow, 2007.

[18]

A. V. Urazaeva and V. E. Fedorov, An inverse problem for linear Sobolev type equations, J. Inverse Ill-Posed Probl., 12 (2004), 387-395. doi: 10.1515/1569394042248210.

[19]

A. V. Urazaeva and V. E. Fedorov, Prediction-control problem for some systems of equations of fluid dynamics, Differ. Equ., 44 (2008), 1147-1156. doi: 10.1134/S0012266108080120.

[20]

A. V. Urazaeva and V. E. Fedorov, On the well-posedness of the prediction-control problem for some systems of equations, Math. Notes, 85 (2009), 426-436. doi: 10.1134/S0001434609030134.

[21]

A. V. Urazaeva and V. E. Fedorov, Lineinaya evolutsionnaya obratnaya zadacha dlya uravnenii sobolevskogo tipa, (Russian) [Linear evolutionary inverse problem for Sobolev type equations], in Neklassicheskie uravnenia matematicheskoi fiziki (ed. A.I. Kozhanov), Sobolev Institute of Mathematics of the SB RAS, (2010), 293-310.

[1]

Kenichi Sakamoto, Masahiro Yamamoto. Inverse source problem with a final overdetermination for a fractional diffusion equation. Mathematical Control and Related Fields, 2011, 1 (4) : 509-518. doi: 10.3934/mcrf.2011.1.509

[2]

Viorel Barbu, Gabriela Marinoschi. An identification problem for a linear evolution equation in a banach space. Discrete and Continuous Dynamical Systems - S, 2020, 13 (5) : 1429-1440. doi: 10.3934/dcdss.2020081

[3]

Nguyen Huy Tuan, Mokhtar Kirane, Long Dinh Le, Van Thinh Nguyen. On an inverse problem for fractional evolution equation. Evolution Equations and Control Theory, 2017, 6 (1) : 111-134. doi: 10.3934/eect.2017007

[4]

Alfredo Lorenzi, Ioan I. Vrabie. An identification problem for a linear evolution equation in a Banach space and applications. Discrete and Continuous Dynamical Systems - S, 2011, 4 (3) : 671-691. doi: 10.3934/dcdss.2011.4.671

[5]

Viorel Nitica, Andrei Török. On a semigroup problem. Discrete and Continuous Dynamical Systems - S, 2019, 12 (8) : 2365-2377. doi: 10.3934/dcdss.2019148

[6]

María Teresa González Montesinos, Francisco Ortegón Gallego. The evolution thermistor problem with degenerate thermal conductivity. Communications on Pure and Applied Analysis, 2002, 1 (3) : 313-325. doi: 10.3934/cpaa.2002.1.313

[7]

Pardeep Kumar, Manil T. Mohan. Well-posedness of an inverse problem for two- and three-dimensional convective Brinkman-Forchheimer equations with the final overdetermination. Inverse Problems and Imaging, , () : -. doi: 10.3934/ipi.2022024

[8]

Alfredo Lorenzi, Eugenio Sinestrari. An identification problem for a nonlinear one-dimensional wave equation. Discrete and Continuous Dynamical Systems, 2013, 33 (11&12) : 5253-5271. doi: 10.3934/dcds.2013.33.5253

[9]

Gen Nakamura, Michiyuki Watanabe. An inverse boundary value problem for a nonlinear wave equation. Inverse Problems and Imaging, 2008, 2 (1) : 121-131. doi: 10.3934/ipi.2008.2.121

[10]

Xiaoli Feng, Meixia Zhao, Peijun Li, Xu Wang. An inverse source problem for the stochastic wave equation. Inverse Problems and Imaging, 2022, 16 (2) : 397-415. doi: 10.3934/ipi.2021055

[11]

Fang Liu. The eigenvalue problem for a class of degenerate operators related to the normalized $ p $-Laplacian. Discrete and Continuous Dynamical Systems - B, 2022, 27 (5) : 2701-2720. doi: 10.3934/dcdsb.2021155

[12]

Soumia Saïdi. On a second-order functional evolution problem with time and state dependent maximal monotone operators. Evolution Equations and Control Theory, 2021  doi: 10.3934/eect.2021034

[13]

Michael V. Klibanov. A phaseless inverse scattering problem for the 3-D Helmholtz equation. Inverse Problems and Imaging, 2017, 11 (2) : 263-276. doi: 10.3934/ipi.2017013

[14]

Suman Kumar Sahoo, Manmohan Vashisth. A partial data inverse problem for the convection-diffusion equation. Inverse Problems and Imaging, 2020, 14 (1) : 53-75. doi: 10.3934/ipi.2019063

[15]

Daniel G. Alfaro Vigo, Amaury C. Álvarez, Grigori Chapiro, Galina C. García, Carlos G. Moreira. Solving the inverse problem for an ordinary differential equation using conjugation. Journal of Computational Dynamics, 2020, 7 (2) : 183-208. doi: 10.3934/jcd.2020008

[16]

John C. Schotland, Vadim A. Markel. Fourier-Laplace structure of the inverse scattering problem for the radiative transport equation. Inverse Problems and Imaging, 2007, 1 (1) : 181-188. doi: 10.3934/ipi.2007.1.181

[17]

Yuxuan Gong, Xiang Xu. Inverse random source problem for biharmonic equation in two dimensions. Inverse Problems and Imaging, 2019, 13 (3) : 635-652. doi: 10.3934/ipi.2019029

[18]

Li Liang. Increasing stability for the inverse problem of the Schrödinger equation with the partial Cauchy data. Inverse Problems and Imaging, 2015, 9 (2) : 469-478. doi: 10.3934/ipi.2015.9.469

[19]

Shumin Li, Masahiro Yamamoto, Bernadette Miara. A Carleman estimate for the linear shallow shell equation and an inverse source problem. Discrete and Continuous Dynamical Systems, 2009, 23 (1&2) : 367-380. doi: 10.3934/dcds.2009.23.367

[20]

Laurent Bourgeois, Dmitry Ponomarev, Jérémi Dardé. An inverse obstacle problem for the wave equation in a finite time domain. Inverse Problems and Imaging, 2019, 13 (2) : 377-400. doi: 10.3934/ipi.2019019

2020 Impact Factor: 2.425

Metrics

  • PDF downloads (164)
  • HTML views (0)
  • Cited by (7)

Other articles
by authors

[Back to Top]