• Previous Article
    A symmetry result for degenerate elliptic equations on the Wiener space with nonlinear boundary conditions and applications
  • DCDS-S Home
  • This Issue
  • Next Article
    Semigroup-theoretic approach to identification of linear diffusion coefficients
June  2016, 9(3): 791-813. doi: 10.3934/dcdss.2016029

Stability of the wave equation with localized Kelvin-Voigt damping and boundary delay feedback

1. 

Université de Valenciennes et du Hainaut Cambrésis, LAMAV and FR CNRS 2956, Le Mont Houy, Institut des Sciences et Techniques de Valenciennes, 59313 Valenciennes Cedex 9

2. 

Dipartimento di Matematica Pura e Applicata, Università di L'Aquila, Via Vetoio, Loc. Coppito, 67010 L'Aquila

Received  March 2015 Revised  July 2015 Published  April 2016

We study the stabilization problem for the wave equation with localized Kelvin--Voigt damping and mixed boundary condition with time delay. By using a frequency domain approach we show that, under an appropriate condition between the internal damping and the boundary feedback, an exponential stability result holds. In this sense, this extends the result of [19] where, in a more general setting, the case of distributed structural damping is considered.
Citation: Serge Nicaise, Cristina Pignotti. Stability of the wave equation with localized Kelvin-Voigt damping and boundary delay feedback. Discrete and Continuous Dynamical Systems - S, 2016, 9 (3) : 791-813. doi: 10.3934/dcdss.2016029
References:
[1]

K. Ammari and S. Gerbi, Interior feedback stabilization of wave equations with dynamic boundary delay,, , (). 

[2]

K. Ammari, S. Nicaise and C. Pignotti, Stability of abstract-wave equation with delay and a Kelvin-Voigt damping, Asymptot. Anal., 95 (2015), 21-38. doi: 10.3233/ASY-151317.

[3]

G. Chen, Control and stabilization for the wave equation in a bounded domain I, SIAM J. Control Optim., 17 (1979), 66-81. doi: 10.1137/0317007.

[4]

G. Chen, Control and stabilization for the wave equation in a bounded domain II, SIAM J. Control Optim., 19 (1981), 114-122. doi: 10.1137/0319009.

[5]

R. Datko, Not all feedback stabilized hyperbolic systems are robust with respect to small time delays in their feedbacks, SIAM J. Control Optim., 26 (1988), 697-713. doi: 10.1137/0326040.

[6]

R. Datko, J. Lagnese and M. P. Polis, An example on the effect of time delays in boundary feedback stabilization of wave equations, SIAM J. Control Optim., 24 (1986), 152-156. doi: 10.1137/0324007.

[7]

V. Girault and P. A. Raviart, Finite Element Methods for Navier-Stokes Equations. Theory and Algorithms, Springer Series in Computational Mathematics, 5 Springer, Berlin, 1986. doi: 10.1007/978-3-642-61623-5.

[8]

F. Huang, Characteristic conditions for exponential stability of linear dynamical systems in Hilbert spaces, Ann. Differential Equations, 1 (1985), 43-56.

[9]

V. Komornik, Rapid boundary stabilization of the wave equation, SIAM J. Control Optim., 29 (1991), 197-208. doi: 10.1137/0329011.

[10]

V. Komornik, Exact Controllability and Stabilization. The Multiplier Method, RAM: Research in Applied Mathematics, 36, Masson, Paris, 1994.

[11]

V. Komornik and E. Zuazua, A direct method for the boundary stabilization of the wave equation, J. Math. Pures Appl., 69 (1990), 33-54.

[12]

J. Lagnese, Decay of solutions of wave equation in a bounded region with boundary dissipation, J. Differential Equations, 50 (1983), 163-182. doi: 10.1016/0022-0396(83)90073-6.

[13]

J. Lagnese, Note on boundary stabilization of wave equations, SIAM J. Control and Optim., 26 (1988), 1250-1256. doi: 10.1137/0326068.

[14]

I. Lasiecka and R. Triggiani, Uniform exponential energy decay of wave equations in a bounded region with $L_2(0,T;L_2(\Sigma))$-feedback control in the Dirichlet boundary conditions, J. Differential Equations, 66 (1987), 340-390. doi: 10.1016/0022-0396(87)90025-8.

[15]

J. L. Lions, Contrôlabilité Exacte, Perturbations et Stabilisation de Systèmes Distribués. Tome 1, Recherches en Mathématiques Appliquées [Research in Applied Mathematics] Masson, Paris, 1988.

[16]

K. Liu and B. Rao, Exponential stability for the wave equations with local Kelvin-Voigt damping, Z. angew. Math. Phys., 57 (2006), 419-432. doi: 10.1007/s00033-005-0029-2.

[17]

Ö. Mörgul, On the stabilization and stability robustness against small delays of some damped wave equations, IEEE Trans. Automat. Control., 40 (1995), 1626-1630. doi: 10.1109/9.412634.

[18]

S. Nicaise and C. Pignotti, Stability and instability results of the wave equation with a delay term in the boundary or internal feedbacks, SIAM J. Control Optim., 45 (2006), 1561-1585. doi: 10.1137/060648891.

[19]

S. Nicaise and C. Pignotti, Exponential stability of second-order evolution equations with structural damping and dynamic boundary delay feedback, IMA J. Math. Control Inform., 28 (2011), 417-446. doi: 10.1093/imamci/dnr012.

[20]

J. Prüss, On the spectrum of $C_{0}$-semigroups, Trans. Amer. Math. Soc., 284 (1984), 847-857. doi: 10.2307/1999112.

[21]

G. Q. Xu, S. P. Yung and L. K. Li, Stabilization of wave systems with input delay in the boundary control, ESAIM: Control Optim. Calc. Var., 12 (2006), 770-785. doi: 10.1051/cocv:2006021.

[22]

E. Zuazua, Exponential decay for the semilinear wave equation with locally distributed damping, Comm. Partial Differential Equations, 15 (1990), 205-235. doi: 10.1080/03605309908820684.

show all references

References:
[1]

K. Ammari and S. Gerbi, Interior feedback stabilization of wave equations with dynamic boundary delay,, , (). 

[2]

K. Ammari, S. Nicaise and C. Pignotti, Stability of abstract-wave equation with delay and a Kelvin-Voigt damping, Asymptot. Anal., 95 (2015), 21-38. doi: 10.3233/ASY-151317.

[3]

G. Chen, Control and stabilization for the wave equation in a bounded domain I, SIAM J. Control Optim., 17 (1979), 66-81. doi: 10.1137/0317007.

[4]

G. Chen, Control and stabilization for the wave equation in a bounded domain II, SIAM J. Control Optim., 19 (1981), 114-122. doi: 10.1137/0319009.

[5]

R. Datko, Not all feedback stabilized hyperbolic systems are robust with respect to small time delays in their feedbacks, SIAM J. Control Optim., 26 (1988), 697-713. doi: 10.1137/0326040.

[6]

R. Datko, J. Lagnese and M. P. Polis, An example on the effect of time delays in boundary feedback stabilization of wave equations, SIAM J. Control Optim., 24 (1986), 152-156. doi: 10.1137/0324007.

[7]

V. Girault and P. A. Raviart, Finite Element Methods for Navier-Stokes Equations. Theory and Algorithms, Springer Series in Computational Mathematics, 5 Springer, Berlin, 1986. doi: 10.1007/978-3-642-61623-5.

[8]

F. Huang, Characteristic conditions for exponential stability of linear dynamical systems in Hilbert spaces, Ann. Differential Equations, 1 (1985), 43-56.

[9]

V. Komornik, Rapid boundary stabilization of the wave equation, SIAM J. Control Optim., 29 (1991), 197-208. doi: 10.1137/0329011.

[10]

V. Komornik, Exact Controllability and Stabilization. The Multiplier Method, RAM: Research in Applied Mathematics, 36, Masson, Paris, 1994.

[11]

V. Komornik and E. Zuazua, A direct method for the boundary stabilization of the wave equation, J. Math. Pures Appl., 69 (1990), 33-54.

[12]

J. Lagnese, Decay of solutions of wave equation in a bounded region with boundary dissipation, J. Differential Equations, 50 (1983), 163-182. doi: 10.1016/0022-0396(83)90073-6.

[13]

J. Lagnese, Note on boundary stabilization of wave equations, SIAM J. Control and Optim., 26 (1988), 1250-1256. doi: 10.1137/0326068.

[14]

I. Lasiecka and R. Triggiani, Uniform exponential energy decay of wave equations in a bounded region with $L_2(0,T;L_2(\Sigma))$-feedback control in the Dirichlet boundary conditions, J. Differential Equations, 66 (1987), 340-390. doi: 10.1016/0022-0396(87)90025-8.

[15]

J. L. Lions, Contrôlabilité Exacte, Perturbations et Stabilisation de Systèmes Distribués. Tome 1, Recherches en Mathématiques Appliquées [Research in Applied Mathematics] Masson, Paris, 1988.

[16]

K. Liu and B. Rao, Exponential stability for the wave equations with local Kelvin-Voigt damping, Z. angew. Math. Phys., 57 (2006), 419-432. doi: 10.1007/s00033-005-0029-2.

[17]

Ö. Mörgul, On the stabilization and stability robustness against small delays of some damped wave equations, IEEE Trans. Automat. Control., 40 (1995), 1626-1630. doi: 10.1109/9.412634.

[18]

S. Nicaise and C. Pignotti, Stability and instability results of the wave equation with a delay term in the boundary or internal feedbacks, SIAM J. Control Optim., 45 (2006), 1561-1585. doi: 10.1137/060648891.

[19]

S. Nicaise and C. Pignotti, Exponential stability of second-order evolution equations with structural damping and dynamic boundary delay feedback, IMA J. Math. Control Inform., 28 (2011), 417-446. doi: 10.1093/imamci/dnr012.

[20]

J. Prüss, On the spectrum of $C_{0}$-semigroups, Trans. Amer. Math. Soc., 284 (1984), 847-857. doi: 10.2307/1999112.

[21]

G. Q. Xu, S. P. Yung and L. K. Li, Stabilization of wave systems with input delay in the boundary control, ESAIM: Control Optim. Calc. Var., 12 (2006), 770-785. doi: 10.1051/cocv:2006021.

[22]

E. Zuazua, Exponential decay for the semilinear wave equation with locally distributed damping, Comm. Partial Differential Equations, 15 (1990), 205-235. doi: 10.1080/03605309908820684.

[1]

Serge Nicaise, Julie Valein. Stabilization of the wave equation on 1-d networks with a delay term in the nodal feedbacks. Networks and Heterogeneous Media, 2007, 2 (3) : 425-479. doi: 10.3934/nhm.2007.2.425

[2]

Ferhat Mohamed, Hakem Ali. Energy decay of solutions for the wave equation with a time-varying delay term in the weakly nonlinear internal feedbacks. Discrete and Continuous Dynamical Systems - B, 2017, 22 (2) : 491-506. doi: 10.3934/dcdsb.2017024

[3]

Yanni Guo, Genqi Xu, Yansha Guo. Stabilization of the wave equation with interior input delay and mixed Neumann-Dirichlet boundary. Discrete and Continuous Dynamical Systems - B, 2016, 21 (8) : 2491-2507. doi: 10.3934/dcdsb.2016057

[4]

Kim Dang Phung. Boundary stabilization for the wave equation in a bounded cylindrical domain. Discrete and Continuous Dynamical Systems, 2008, 20 (4) : 1057-1093. doi: 10.3934/dcds.2008.20.1057

[5]

Behzad Azmi, Karl Kunisch. Receding horizon control for the stabilization of the wave equation. Discrete and Continuous Dynamical Systems, 2018, 38 (2) : 449-484. doi: 10.3934/dcds.2018021

[6]

Serge Nicaise. Internal stabilization of a Mindlin-Timoshenko model by interior feedbacks. Mathematical Control and Related Fields, 2011, 1 (3) : 331-352. doi: 10.3934/mcrf.2011.1.331

[7]

Bei Gong, Zhen-Hu Ning, Fengyan Yang. Stabilization of the transmission wave/plate equation with variable coefficients on $ {\mathbb{R}}^n $. Evolution Equations and Control Theory, 2021, 10 (2) : 321-331. doi: 10.3934/eect.2020068

[8]

Xiaorui Wang, Genqi Xu. Uniform stabilization of a wave equation with partial Dirichlet delayed control. Evolution Equations and Control Theory, 2020, 9 (2) : 509-533. doi: 10.3934/eect.2020022

[9]

Zhiling Guo, Shugen Chai. Exponential stabilization of the problem of transmission of wave equation with linear dynamical feedback control. Evolution Equations and Control Theory, 2022  doi: 10.3934/eect.2022001

[10]

Serge Nicaise, Cristina Pignotti, Julie Valein. Exponential stability of the wave equation with boundary time-varying delay. Discrete and Continuous Dynamical Systems - S, 2011, 4 (3) : 693-722. doi: 10.3934/dcdss.2011.4.693

[11]

Mokhtar Kirane, Belkacem Said-Houari, Mohamed Naim Anwar. Stability result for the Timoshenko system with a time-varying delay term in the internal feedbacks. Communications on Pure and Applied Analysis, 2011, 10 (2) : 667-686. doi: 10.3934/cpaa.2011.10.667

[12]

Martin Gugat, Günter Leugering, Ke Wang. Neumann boundary feedback stabilization for a nonlinear wave equation: A strict $H^2$-lyapunov function. Mathematical Control and Related Fields, 2017, 7 (3) : 419-448. doi: 10.3934/mcrf.2017015

[13]

Mohammad Akil, Ali Wehbe. Stabilization of multidimensional wave equation with locally boundary fractional dissipation law under geometric conditions. Mathematical Control and Related Fields, 2019, 9 (1) : 97-116. doi: 10.3934/mcrf.2019005

[14]

Mokhtari Yacine. Boundary controllability and boundary time-varying feedback stabilization of the 1D wave equation in non-cylindrical domains. Evolution Equations and Control Theory, 2022, 11 (2) : 373-397. doi: 10.3934/eect.2021004

[15]

Imene Aicha Djebour, Takéo Takahashi, Julie Valein. Feedback stabilization of parabolic systems with input delay. Mathematical Control and Related Fields, 2022, 12 (2) : 405-420. doi: 10.3934/mcrf.2021027

[16]

Yaru Xie, Genqi Xu. Exponential stability of 1-d wave equation with the boundary time delay based on the interior control. Discrete and Continuous Dynamical Systems - S, 2017, 10 (3) : 557-579. doi: 10.3934/dcdss.2017028

[17]

Guo Lin, Haiyan Wang. Traveling wave solutions of a reaction-diffusion equation with state-dependent delay. Communications on Pure and Applied Analysis, 2016, 15 (2) : 319-334. doi: 10.3934/cpaa.2016.15.319

[18]

Vanessa Barros, Carlos Nonato, Carlos Raposo. Global existence and energy decay of solutions for a wave equation with non-constant delay and nonlinear weights. Electronic Research Archive, 2020, 28 (1) : 205-220. doi: 10.3934/era.2020014

[19]

Alberto Bressan, Fabio S. Priuli. Nearly optimal patchy feedbacks. Discrete and Continuous Dynamical Systems, 2008, 21 (3) : 687-701. doi: 10.3934/dcds.2008.21.687

[20]

Andrei Fursikov. Stabilization of the simplest normal parabolic equation. Communications on Pure and Applied Analysis, 2014, 13 (5) : 1815-1854. doi: 10.3934/cpaa.2014.13.1815

2020 Impact Factor: 2.425

Metrics

  • PDF downloads (286)
  • HTML views (0)
  • Cited by (9)

Other articles
by authors

[Back to Top]