• Previous Article
    A symmetry result for degenerate elliptic equations on the Wiener space with nonlinear boundary conditions and applications
  • DCDS-S Home
  • This Issue
  • Next Article
    Semigroup-theoretic approach to identification of linear diffusion coefficients
June  2016, 9(3): 791-813. doi: 10.3934/dcdss.2016029

Stability of the wave equation with localized Kelvin-Voigt damping and boundary delay feedback

1. 

Université de Valenciennes et du Hainaut Cambrésis, LAMAV and FR CNRS 2956, Le Mont Houy, Institut des Sciences et Techniques de Valenciennes, 59313 Valenciennes Cedex 9

2. 

Dipartimento di Matematica Pura e Applicata, Università di L'Aquila, Via Vetoio, Loc. Coppito, 67010 L'Aquila

Received  March 2015 Revised  July 2015 Published  April 2016

We study the stabilization problem for the wave equation with localized Kelvin--Voigt damping and mixed boundary condition with time delay. By using a frequency domain approach we show that, under an appropriate condition between the internal damping and the boundary feedback, an exponential stability result holds. In this sense, this extends the result of [19] where, in a more general setting, the case of distributed structural damping is considered.
Citation: Serge Nicaise, Cristina Pignotti. Stability of the wave equation with localized Kelvin-Voigt damping and boundary delay feedback. Discrete & Continuous Dynamical Systems - S, 2016, 9 (3) : 791-813. doi: 10.3934/dcdss.2016029
References:
[1]

K. Ammari and S. Gerbi, Interior feedback stabilization of wave equations with dynamic boundary delay,, , ().   Google Scholar

[2]

K. Ammari, S. Nicaise and C. Pignotti, Stability of abstract-wave equation with delay and a Kelvin-Voigt damping,, Asymptot. Anal., 95 (2015), 21.  doi: 10.3233/ASY-151317.  Google Scholar

[3]

G. Chen, Control and stabilization for the wave equation in a bounded domain I,, SIAM J. Control Optim., 17 (1979), 66.  doi: 10.1137/0317007.  Google Scholar

[4]

G. Chen, Control and stabilization for the wave equation in a bounded domain II,, SIAM J. Control Optim., 19 (1981), 114.  doi: 10.1137/0319009.  Google Scholar

[5]

R. Datko, Not all feedback stabilized hyperbolic systems are robust with respect to small time delays in their feedbacks,, SIAM J. Control Optim., 26 (1988), 697.  doi: 10.1137/0326040.  Google Scholar

[6]

R. Datko, J. Lagnese and M. P. Polis, An example on the effect of time delays in boundary feedback stabilization of wave equations,, SIAM J. Control Optim., 24 (1986), 152.  doi: 10.1137/0324007.  Google Scholar

[7]

V. Girault and P. A. Raviart, Finite Element Methods for Navier-Stokes Equations. Theory and Algorithms,, Springer Series in Computational Mathematics, 5 (1986).  doi: 10.1007/978-3-642-61623-5.  Google Scholar

[8]

F. Huang, Characteristic conditions for exponential stability of linear dynamical systems in Hilbert spaces,, Ann. Differential Equations, 1 (1985), 43.   Google Scholar

[9]

V. Komornik, Rapid boundary stabilization of the wave equation,, SIAM J. Control Optim., 29 (1991), 197.  doi: 10.1137/0329011.  Google Scholar

[10]

V. Komornik, Exact Controllability and Stabilization. The Multiplier Method,, RAM: Research in Applied Mathematics, 36 (1994).   Google Scholar

[11]

V. Komornik and E. Zuazua, A direct method for the boundary stabilization of the wave equation,, J. Math. Pures Appl., 69 (1990), 33.   Google Scholar

[12]

J. Lagnese, Decay of solutions of wave equation in a bounded region with boundary dissipation,, J. Differential Equations, 50 (1983), 163.  doi: 10.1016/0022-0396(83)90073-6.  Google Scholar

[13]

J. Lagnese, Note on boundary stabilization of wave equations,, SIAM J. Control and Optim., 26 (1988), 1250.  doi: 10.1137/0326068.  Google Scholar

[14]

I. Lasiecka and R. Triggiani, Uniform exponential energy decay of wave equations in a bounded region with $L_2(0,T;L_2(\Sigma))$-feedback control in the Dirichlet boundary conditions,, J. Differential Equations, 66 (1987), 340.  doi: 10.1016/0022-0396(87)90025-8.  Google Scholar

[15]

J. L. Lions, Contrôlabilité Exacte, Perturbations et Stabilisation de Systèmes Distribués. Tome 1,, Recherches en Mathématiques Appliquées [Research in Applied Mathematics] Masson, (1988).   Google Scholar

[16]

K. Liu and B. Rao, Exponential stability for the wave equations with local Kelvin-Voigt damping,, Z. angew. Math. Phys., 57 (2006), 419.  doi: 10.1007/s00033-005-0029-2.  Google Scholar

[17]

Ö. Mörgul, On the stabilization and stability robustness against small delays of some damped wave equations,, IEEE Trans. Automat. Control., 40 (1995), 1626.  doi: 10.1109/9.412634.  Google Scholar

[18]

S. Nicaise and C. Pignotti, Stability and instability results of the wave equation with a delay term in the boundary or internal feedbacks,, SIAM J. Control Optim., 45 (2006), 1561.  doi: 10.1137/060648891.  Google Scholar

[19]

S. Nicaise and C. Pignotti, Exponential stability of second-order evolution equations with structural damping and dynamic boundary delay feedback,, IMA J. Math. Control Inform., 28 (2011), 417.  doi: 10.1093/imamci/dnr012.  Google Scholar

[20]

J. Prüss, On the spectrum of $C_{0}$-semigroups,, Trans. Amer. Math. Soc., 284 (1984), 847.  doi: 10.2307/1999112.  Google Scholar

[21]

G. Q. Xu, S. P. Yung and L. K. Li, Stabilization of wave systems with input delay in the boundary control,, ESAIM: Control Optim. Calc. Var., 12 (2006), 770.  doi: 10.1051/cocv:2006021.  Google Scholar

[22]

E. Zuazua, Exponential decay for the semilinear wave equation with locally distributed damping,, Comm. Partial Differential Equations, 15 (1990), 205.  doi: 10.1080/03605309908820684.  Google Scholar

show all references

References:
[1]

K. Ammari and S. Gerbi, Interior feedback stabilization of wave equations with dynamic boundary delay,, , ().   Google Scholar

[2]

K. Ammari, S. Nicaise and C. Pignotti, Stability of abstract-wave equation with delay and a Kelvin-Voigt damping,, Asymptot. Anal., 95 (2015), 21.  doi: 10.3233/ASY-151317.  Google Scholar

[3]

G. Chen, Control and stabilization for the wave equation in a bounded domain I,, SIAM J. Control Optim., 17 (1979), 66.  doi: 10.1137/0317007.  Google Scholar

[4]

G. Chen, Control and stabilization for the wave equation in a bounded domain II,, SIAM J. Control Optim., 19 (1981), 114.  doi: 10.1137/0319009.  Google Scholar

[5]

R. Datko, Not all feedback stabilized hyperbolic systems are robust with respect to small time delays in their feedbacks,, SIAM J. Control Optim., 26 (1988), 697.  doi: 10.1137/0326040.  Google Scholar

[6]

R. Datko, J. Lagnese and M. P. Polis, An example on the effect of time delays in boundary feedback stabilization of wave equations,, SIAM J. Control Optim., 24 (1986), 152.  doi: 10.1137/0324007.  Google Scholar

[7]

V. Girault and P. A. Raviart, Finite Element Methods for Navier-Stokes Equations. Theory and Algorithms,, Springer Series in Computational Mathematics, 5 (1986).  doi: 10.1007/978-3-642-61623-5.  Google Scholar

[8]

F. Huang, Characteristic conditions for exponential stability of linear dynamical systems in Hilbert spaces,, Ann. Differential Equations, 1 (1985), 43.   Google Scholar

[9]

V. Komornik, Rapid boundary stabilization of the wave equation,, SIAM J. Control Optim., 29 (1991), 197.  doi: 10.1137/0329011.  Google Scholar

[10]

V. Komornik, Exact Controllability and Stabilization. The Multiplier Method,, RAM: Research in Applied Mathematics, 36 (1994).   Google Scholar

[11]

V. Komornik and E. Zuazua, A direct method for the boundary stabilization of the wave equation,, J. Math. Pures Appl., 69 (1990), 33.   Google Scholar

[12]

J. Lagnese, Decay of solutions of wave equation in a bounded region with boundary dissipation,, J. Differential Equations, 50 (1983), 163.  doi: 10.1016/0022-0396(83)90073-6.  Google Scholar

[13]

J. Lagnese, Note on boundary stabilization of wave equations,, SIAM J. Control and Optim., 26 (1988), 1250.  doi: 10.1137/0326068.  Google Scholar

[14]

I. Lasiecka and R. Triggiani, Uniform exponential energy decay of wave equations in a bounded region with $L_2(0,T;L_2(\Sigma))$-feedback control in the Dirichlet boundary conditions,, J. Differential Equations, 66 (1987), 340.  doi: 10.1016/0022-0396(87)90025-8.  Google Scholar

[15]

J. L. Lions, Contrôlabilité Exacte, Perturbations et Stabilisation de Systèmes Distribués. Tome 1,, Recherches en Mathématiques Appliquées [Research in Applied Mathematics] Masson, (1988).   Google Scholar

[16]

K. Liu and B. Rao, Exponential stability for the wave equations with local Kelvin-Voigt damping,, Z. angew. Math. Phys., 57 (2006), 419.  doi: 10.1007/s00033-005-0029-2.  Google Scholar

[17]

Ö. Mörgul, On the stabilization and stability robustness against small delays of some damped wave equations,, IEEE Trans. Automat. Control., 40 (1995), 1626.  doi: 10.1109/9.412634.  Google Scholar

[18]

S. Nicaise and C. Pignotti, Stability and instability results of the wave equation with a delay term in the boundary or internal feedbacks,, SIAM J. Control Optim., 45 (2006), 1561.  doi: 10.1137/060648891.  Google Scholar

[19]

S. Nicaise and C. Pignotti, Exponential stability of second-order evolution equations with structural damping and dynamic boundary delay feedback,, IMA J. Math. Control Inform., 28 (2011), 417.  doi: 10.1093/imamci/dnr012.  Google Scholar

[20]

J. Prüss, On the spectrum of $C_{0}$-semigroups,, Trans. Amer. Math. Soc., 284 (1984), 847.  doi: 10.2307/1999112.  Google Scholar

[21]

G. Q. Xu, S. P. Yung and L. K. Li, Stabilization of wave systems with input delay in the boundary control,, ESAIM: Control Optim. Calc. Var., 12 (2006), 770.  doi: 10.1051/cocv:2006021.  Google Scholar

[22]

E. Zuazua, Exponential decay for the semilinear wave equation with locally distributed damping,, Comm. Partial Differential Equations, 15 (1990), 205.  doi: 10.1080/03605309908820684.  Google Scholar

[1]

Mokhtari Yacine. Boundary controllability and boundary time-varying feedback stabilization of the 1D wave equation in non-cylindrical domains. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021004

[2]

Biyue Chen, Chunxiang Zhao, Chengkui Zhong. The global attractor for the wave equation with nonlocal strong damping. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021015

[3]

Yukihiko Nakata. Existence of a period two solution of a delay differential equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1103-1110. doi: 10.3934/dcdss.2020392

[4]

Xiaorui Wang, Genqi Xu, Hao Chen. Uniform stabilization of 1-D Schrödinger equation with internal difference-type control. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021022

[5]

Xinyu Mei, Yangmin Xiong, Chunyou Sun. Pullback attractor for a weakly damped wave equation with sup-cubic nonlinearity. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 569-600. doi: 10.3934/dcds.2020270

[6]

Takiko Sasaki. Convergence of a blow-up curve for a semilinear wave equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1133-1143. doi: 10.3934/dcdss.2020388

[7]

Feifei Cheng, Ji Li. Geometric singular perturbation analysis of Degasperis-Procesi equation with distributed delay. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 967-985. doi: 10.3934/dcds.2020305

[8]

Ahmad Z. Fino, Wenhui Chen. A global existence result for two-dimensional semilinear strongly damped wave equation with mixed nonlinearity in an exterior domain. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5387-5411. doi: 10.3934/cpaa.2020243

[9]

Ludovick Gagnon, José M. Urquiza. Uniform boundary observability with Legendre-Galerkin formulations of the 1-D wave equation. Evolution Equations & Control Theory, 2021, 10 (1) : 129-153. doi: 10.3934/eect.2020054

[10]

Xin-Guang Yang, Lu Li, Xingjie Yan, Ling Ding. The structure and stability of pullback attractors for 3D Brinkman-Forchheimer equation with delay. Electronic Research Archive, 2020, 28 (4) : 1395-1418. doi: 10.3934/era.2020074

[11]

Linglong Du, Min Yang. Pointwise long time behavior for the mixed damped nonlinear wave equation in $ \mathbb{R}^n_+ $. Networks & Heterogeneous Media, 2020  doi: 10.3934/nhm.2020033

[12]

Oussama Landoulsi. Construction of a solitary wave solution of the nonlinear focusing schrödinger equation outside a strictly convex obstacle in the $ L^2 $-supercritical case. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 701-746. doi: 10.3934/dcds.2020298

[13]

Ilyasse Lamrani, Imad El Harraki, Ali Boutoulout, Fatima-Zahrae El Alaoui. Feedback stabilization of bilinear coupled hyperbolic systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020434

[14]

Michael Winkler, Christian Stinner. Refined regularity and stabilization properties in a degenerate haptotaxis system. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 4039-4058. doi: 10.3934/dcds.2020030

[15]

Hai-Yang Jin, Zhi-An Wang. Global stabilization of the full attraction-repulsion Keller-Segel system. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3509-3527. doi: 10.3934/dcds.2020027

[16]

Jean-Paul Chehab. Damping, stabilization, and numerical filtering for the modeling and the simulation of time dependent PDEs. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021002

[17]

Simone Göttlich, Elisa Iacomini, Thomas Jung. Properties of the LWR model with time delay. Networks & Heterogeneous Media, 2020  doi: 10.3934/nhm.2020032

[18]

Jong-Shenq Guo, Ken-Ichi Nakamura, Toshiko Ogiwara, Chang-Hong Wu. The sign of traveling wave speed in bistable dynamics. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3451-3466. doi: 10.3934/dcds.2020047

[19]

Xu Zhang, Chuang Zheng, Enrique Zuazua. Time discrete wave equations: Boundary observability and control. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 571-604. doi: 10.3934/dcds.2009.23.571

[20]

Marcello D'Abbicco, Giovanni Girardi, Giséle Ruiz Goldstein, Jerome A. Goldstein, Silvia Romanelli. Equipartition of energy for nonautonomous damped wave equations. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 597-613. doi: 10.3934/dcdss.2020364

2019 Impact Factor: 1.233

Metrics

  • PDF downloads (71)
  • HTML views (0)
  • Cited by (8)

Other articles
by authors

[Back to Top]