-
Previous Article
A symmetry result for degenerate elliptic equations on the Wiener space with nonlinear boundary conditions and applications
- DCDS-S Home
- This Issue
-
Next Article
Semigroup-theoretic approach to identification of linear diffusion coefficients
Stability of the wave equation with localized Kelvin-Voigt damping and boundary delay feedback
1. | Université de Valenciennes et du Hainaut Cambrésis, LAMAV and FR CNRS 2956, Le Mont Houy, Institut des Sciences et Techniques de Valenciennes, 59313 Valenciennes Cedex 9 |
2. | Dipartimento di Matematica Pura e Applicata, Università di L'Aquila, Via Vetoio, Loc. Coppito, 67010 L'Aquila |
References:
[1] |
K. Ammari and S. Gerbi, Interior feedback stabilization of wave equations with dynamic boundary delay,, , (). Google Scholar |
[2] |
K. Ammari, S. Nicaise and C. Pignotti, Stability of abstract-wave equation with delay and a Kelvin-Voigt damping,, Asymptot. Anal., 95 (2015), 21.
doi: 10.3233/ASY-151317. |
[3] |
G. Chen, Control and stabilization for the wave equation in a bounded domain I,, SIAM J. Control Optim., 17 (1979), 66.
doi: 10.1137/0317007. |
[4] |
G. Chen, Control and stabilization for the wave equation in a bounded domain II,, SIAM J. Control Optim., 19 (1981), 114.
doi: 10.1137/0319009. |
[5] |
R. Datko, Not all feedback stabilized hyperbolic systems are robust with respect to small time delays in their feedbacks,, SIAM J. Control Optim., 26 (1988), 697.
doi: 10.1137/0326040. |
[6] |
R. Datko, J. Lagnese and M. P. Polis, An example on the effect of time delays in boundary feedback stabilization of wave equations,, SIAM J. Control Optim., 24 (1986), 152.
doi: 10.1137/0324007. |
[7] |
V. Girault and P. A. Raviart, Finite Element Methods for Navier-Stokes Equations. Theory and Algorithms,, Springer Series in Computational Mathematics, 5 (1986).
doi: 10.1007/978-3-642-61623-5. |
[8] |
F. Huang, Characteristic conditions for exponential stability of linear dynamical systems in Hilbert spaces,, Ann. Differential Equations, 1 (1985), 43.
|
[9] |
V. Komornik, Rapid boundary stabilization of the wave equation,, SIAM J. Control Optim., 29 (1991), 197.
doi: 10.1137/0329011. |
[10] |
V. Komornik, Exact Controllability and Stabilization. The Multiplier Method,, RAM: Research in Applied Mathematics, 36 (1994).
|
[11] |
V. Komornik and E. Zuazua, A direct method for the boundary stabilization of the wave equation,, J. Math. Pures Appl., 69 (1990), 33.
|
[12] |
J. Lagnese, Decay of solutions of wave equation in a bounded region with boundary dissipation,, J. Differential Equations, 50 (1983), 163.
doi: 10.1016/0022-0396(83)90073-6. |
[13] |
J. Lagnese, Note on boundary stabilization of wave equations,, SIAM J. Control and Optim., 26 (1988), 1250.
doi: 10.1137/0326068. |
[14] |
I. Lasiecka and R. Triggiani, Uniform exponential energy decay of wave equations in a bounded region with $L_2(0,T;L_2(\Sigma))$-feedback control in the Dirichlet boundary conditions,, J. Differential Equations, 66 (1987), 340.
doi: 10.1016/0022-0396(87)90025-8. |
[15] |
J. L. Lions, Contrôlabilité Exacte, Perturbations et Stabilisation de Systèmes Distribués. Tome 1,, Recherches en Mathématiques Appliquées [Research in Applied Mathematics] Masson, (1988).
|
[16] |
K. Liu and B. Rao, Exponential stability for the wave equations with local Kelvin-Voigt damping,, Z. angew. Math. Phys., 57 (2006), 419.
doi: 10.1007/s00033-005-0029-2. |
[17] |
Ö. Mörgul, On the stabilization and stability robustness against small delays of some damped wave equations,, IEEE Trans. Automat. Control., 40 (1995), 1626.
doi: 10.1109/9.412634. |
[18] |
S. Nicaise and C. Pignotti, Stability and instability results of the wave equation with a delay term in the boundary or internal feedbacks,, SIAM J. Control Optim., 45 (2006), 1561.
doi: 10.1137/060648891. |
[19] |
S. Nicaise and C. Pignotti, Exponential stability of second-order evolution equations with structural damping and dynamic boundary delay feedback,, IMA J. Math. Control Inform., 28 (2011), 417.
doi: 10.1093/imamci/dnr012. |
[20] |
J. Prüss, On the spectrum of $C_{0}$-semigroups,, Trans. Amer. Math. Soc., 284 (1984), 847.
doi: 10.2307/1999112. |
[21] |
G. Q. Xu, S. P. Yung and L. K. Li, Stabilization of wave systems with input delay in the boundary control,, ESAIM: Control Optim. Calc. Var., 12 (2006), 770.
doi: 10.1051/cocv:2006021. |
[22] |
E. Zuazua, Exponential decay for the semilinear wave equation with locally distributed damping,, Comm. Partial Differential Equations, 15 (1990), 205.
doi: 10.1080/03605309908820684. |
show all references
References:
[1] |
K. Ammari and S. Gerbi, Interior feedback stabilization of wave equations with dynamic boundary delay,, , (). Google Scholar |
[2] |
K. Ammari, S. Nicaise and C. Pignotti, Stability of abstract-wave equation with delay and a Kelvin-Voigt damping,, Asymptot. Anal., 95 (2015), 21.
doi: 10.3233/ASY-151317. |
[3] |
G. Chen, Control and stabilization for the wave equation in a bounded domain I,, SIAM J. Control Optim., 17 (1979), 66.
doi: 10.1137/0317007. |
[4] |
G. Chen, Control and stabilization for the wave equation in a bounded domain II,, SIAM J. Control Optim., 19 (1981), 114.
doi: 10.1137/0319009. |
[5] |
R. Datko, Not all feedback stabilized hyperbolic systems are robust with respect to small time delays in their feedbacks,, SIAM J. Control Optim., 26 (1988), 697.
doi: 10.1137/0326040. |
[6] |
R. Datko, J. Lagnese and M. P. Polis, An example on the effect of time delays in boundary feedback stabilization of wave equations,, SIAM J. Control Optim., 24 (1986), 152.
doi: 10.1137/0324007. |
[7] |
V. Girault and P. A. Raviart, Finite Element Methods for Navier-Stokes Equations. Theory and Algorithms,, Springer Series in Computational Mathematics, 5 (1986).
doi: 10.1007/978-3-642-61623-5. |
[8] |
F. Huang, Characteristic conditions for exponential stability of linear dynamical systems in Hilbert spaces,, Ann. Differential Equations, 1 (1985), 43.
|
[9] |
V. Komornik, Rapid boundary stabilization of the wave equation,, SIAM J. Control Optim., 29 (1991), 197.
doi: 10.1137/0329011. |
[10] |
V. Komornik, Exact Controllability and Stabilization. The Multiplier Method,, RAM: Research in Applied Mathematics, 36 (1994).
|
[11] |
V. Komornik and E. Zuazua, A direct method for the boundary stabilization of the wave equation,, J. Math. Pures Appl., 69 (1990), 33.
|
[12] |
J. Lagnese, Decay of solutions of wave equation in a bounded region with boundary dissipation,, J. Differential Equations, 50 (1983), 163.
doi: 10.1016/0022-0396(83)90073-6. |
[13] |
J. Lagnese, Note on boundary stabilization of wave equations,, SIAM J. Control and Optim., 26 (1988), 1250.
doi: 10.1137/0326068. |
[14] |
I. Lasiecka and R. Triggiani, Uniform exponential energy decay of wave equations in a bounded region with $L_2(0,T;L_2(\Sigma))$-feedback control in the Dirichlet boundary conditions,, J. Differential Equations, 66 (1987), 340.
doi: 10.1016/0022-0396(87)90025-8. |
[15] |
J. L. Lions, Contrôlabilité Exacte, Perturbations et Stabilisation de Systèmes Distribués. Tome 1,, Recherches en Mathématiques Appliquées [Research in Applied Mathematics] Masson, (1988).
|
[16] |
K. Liu and B. Rao, Exponential stability for the wave equations with local Kelvin-Voigt damping,, Z. angew. Math. Phys., 57 (2006), 419.
doi: 10.1007/s00033-005-0029-2. |
[17] |
Ö. Mörgul, On the stabilization and stability robustness against small delays of some damped wave equations,, IEEE Trans. Automat. Control., 40 (1995), 1626.
doi: 10.1109/9.412634. |
[18] |
S. Nicaise and C. Pignotti, Stability and instability results of the wave equation with a delay term in the boundary or internal feedbacks,, SIAM J. Control Optim., 45 (2006), 1561.
doi: 10.1137/060648891. |
[19] |
S. Nicaise and C. Pignotti, Exponential stability of second-order evolution equations with structural damping and dynamic boundary delay feedback,, IMA J. Math. Control Inform., 28 (2011), 417.
doi: 10.1093/imamci/dnr012. |
[20] |
J. Prüss, On the spectrum of $C_{0}$-semigroups,, Trans. Amer. Math. Soc., 284 (1984), 847.
doi: 10.2307/1999112. |
[21] |
G. Q. Xu, S. P. Yung and L. K. Li, Stabilization of wave systems with input delay in the boundary control,, ESAIM: Control Optim. Calc. Var., 12 (2006), 770.
doi: 10.1051/cocv:2006021. |
[22] |
E. Zuazua, Exponential decay for the semilinear wave equation with locally distributed damping,, Comm. Partial Differential Equations, 15 (1990), 205.
doi: 10.1080/03605309908820684. |
[1] |
Mokhtari Yacine. Boundary controllability and boundary time-varying feedback stabilization of the 1D wave equation in non-cylindrical domains. Evolution Equations & Control Theory, 2021 doi: 10.3934/eect.2021004 |
[2] |
Biyue Chen, Chunxiang Zhao, Chengkui Zhong. The global attractor for the wave equation with nonlocal strong damping. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021015 |
[3] |
Yukihiko Nakata. Existence of a period two solution of a delay differential equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1103-1110. doi: 10.3934/dcdss.2020392 |
[4] |
Xiaorui Wang, Genqi Xu, Hao Chen. Uniform stabilization of 1-D Schrödinger equation with internal difference-type control. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021022 |
[5] |
Xinyu Mei, Yangmin Xiong, Chunyou Sun. Pullback attractor for a weakly damped wave equation with sup-cubic nonlinearity. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 569-600. doi: 10.3934/dcds.2020270 |
[6] |
Takiko Sasaki. Convergence of a blow-up curve for a semilinear wave equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1133-1143. doi: 10.3934/dcdss.2020388 |
[7] |
Feifei Cheng, Ji Li. Geometric singular perturbation analysis of Degasperis-Procesi equation with distributed delay. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 967-985. doi: 10.3934/dcds.2020305 |
[8] |
Ahmad Z. Fino, Wenhui Chen. A global existence result for two-dimensional semilinear strongly damped wave equation with mixed nonlinearity in an exterior domain. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5387-5411. doi: 10.3934/cpaa.2020243 |
[9] |
Ludovick Gagnon, José M. Urquiza. Uniform boundary observability with Legendre-Galerkin formulations of the 1-D wave equation. Evolution Equations & Control Theory, 2021, 10 (1) : 129-153. doi: 10.3934/eect.2020054 |
[10] |
Xin-Guang Yang, Lu Li, Xingjie Yan, Ling Ding. The structure and stability of pullback attractors for 3D Brinkman-Forchheimer equation with delay. Electronic Research Archive, 2020, 28 (4) : 1395-1418. doi: 10.3934/era.2020074 |
[11] |
Linglong Du, Min Yang. Pointwise long time behavior for the mixed damped nonlinear wave equation in $ \mathbb{R}^n_+ $. Networks & Heterogeneous Media, 2020 doi: 10.3934/nhm.2020033 |
[12] |
Oussama Landoulsi. Construction of a solitary wave solution of the nonlinear focusing schrödinger equation outside a strictly convex obstacle in the $ L^2 $-supercritical case. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 701-746. doi: 10.3934/dcds.2020298 |
[13] |
Ilyasse Lamrani, Imad El Harraki, Ali Boutoulout, Fatima-Zahrae El Alaoui. Feedback stabilization of bilinear coupled hyperbolic systems. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020434 |
[14] |
Michael Winkler, Christian Stinner. Refined regularity and stabilization properties in a degenerate haptotaxis system. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 4039-4058. doi: 10.3934/dcds.2020030 |
[15] |
Hai-Yang Jin, Zhi-An Wang. Global stabilization of the full attraction-repulsion Keller-Segel system. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3509-3527. doi: 10.3934/dcds.2020027 |
[16] |
Jean-Paul Chehab. Damping, stabilization, and numerical filtering for the modeling and the simulation of time dependent PDEs. Discrete & Continuous Dynamical Systems - S, 2021 doi: 10.3934/dcdss.2021002 |
[17] |
Simone Göttlich, Elisa Iacomini, Thomas Jung. Properties of the LWR model with time delay. Networks & Heterogeneous Media, 2020 doi: 10.3934/nhm.2020032 |
[18] |
Jong-Shenq Guo, Ken-Ichi Nakamura, Toshiko Ogiwara, Chang-Hong Wu. The sign of traveling wave speed in bistable dynamics. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3451-3466. doi: 10.3934/dcds.2020047 |
[19] |
Xu Zhang, Chuang Zheng, Enrique Zuazua. Time discrete wave equations: Boundary observability and control. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 571-604. doi: 10.3934/dcds.2009.23.571 |
[20] |
Marcello D'Abbicco, Giovanni Girardi, Giséle Ruiz Goldstein, Jerome A. Goldstein, Silvia Romanelli. Equipartition of energy for nonautonomous damped wave equations. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 597-613. doi: 10.3934/dcdss.2020364 |
2019 Impact Factor: 1.233
Tools
Metrics
Other articles
by authors
[Back to Top]