• Previous Article
    Strong solutions of quasilinear equations in Banach spaces not solvable with respect to the highest-order derivative
  • DCDS-S Home
  • This Issue
  • Next Article
    Stability of the wave equation with localized Kelvin-Voigt damping and boundary delay feedback
June  2016, 9(3): 815-831. doi: 10.3934/dcdss.2016030

A symmetry result for degenerate elliptic equations on the Wiener space with nonlinear boundary conditions and applications

1. 

Dipartimento di Matematica, Universitá di Pisa, Largo Bruno Pontecorvo 5, I-56127 Pisa

2. 

Dipartimento di Matematica e Fisica "Ennio De Giorgi" & INFN, Università del Salento, P.O.B. 193, 73100, Lecce, Italy

3. 

Université Aix-Marseille, I2M, UMR CNRS 7353, Marseille, France

Received  November 2014 Revised  April 2015 Published  April 2016

The purpose of this paper is to study a boundary reaction problem on the space $X \times {\mathbb R}$, where $X$ is an abstract Wiener space. We prove that smooth bounded solutions enjoy a symmetry property, i.e., are one-dimensional in a suitable sense. As a corollary of our result, we obtain a symmetry property for some solutions of the following equation $$ (-\Delta_\gamma)^s u= f(u), $$ with $s\in (0,1)$, where $(-\Delta_\gamma)^s$ denotes a fractional power of the Ornstein-Uhlenbeck operator, and we prove that for any $s \in (0,1)$ monotone solutions are one-dimensional.
Citation: Matteo Novaga, Diego Pallara, Yannick Sire. A symmetry result for degenerate elliptic equations on the Wiener space with nonlinear boundary conditions and applications. Discrete & Continuous Dynamical Systems - S, 2016, 9 (3) : 815-831. doi: 10.3934/dcdss.2016030
References:
[1]

G. Alberti, L. Ambrosio and X. Cabré, On a long-standing conjecture of E. De Giorgi: Symmetry in 3D for general nonlinearities and a local minimality property,, Acta Appl. Math., 65 (2001), 9.  doi: 10.1023/A:1010602715526.  Google Scholar

[2]

L. Ambrosio and X. Cabré, Entire solutions of semilinear elliptic equations in $\mathbb R^3$ and a conjecture of De Giorgi,, J. Amer. Math. Soc., 13 (2000), 725.  doi: 10.1090/S0894-0347-00-00345-3.  Google Scholar

[3]

V. I. Bogachev, Gaussian Measures,, Mathematical Surveys and Monographs, 62 (1998).  doi: 10.1090/surv/062.  Google Scholar

[4]

X. Cabré and E. Cinti, Sharp energy estimates for nonlinear fractional diffusion equations,, Calc. Var. Partial Differential Equations, 49 (2014), 233.  doi: 10.1007/s00526-012-0580-6.  Google Scholar

[5]

L. Caffarelli and L. Silvestre, An extension problem related to the fractional Laplacian,, Comm. Partial Differential Equations, 32 (2007), 1245.  doi: 10.1080/03605300600987306.  Google Scholar

[6]

A. Cesaroni, M. Novaga and A. Pinamonti, One-dimensional symmetry for semilinear equations with unbounded drift., Comm. Pure Appl. Analysis, 12 (2013), 2203.  doi: 10.3934/cpaa.2013.12.2203.  Google Scholar

[7]

A. Cesaroni, M. Novaga and E. Valdinoci, A symmetry result for the Ornstein-Uhlenbeck operator,, Discrete Contin. Dyn. Syst.-A, 34 (2014), 2451.  doi: 10.3934/dcds.2014.34.2451.  Google Scholar

[8]

E. De Giorgi, Convergence problems for functionals and operators,, in: Proceedings of the International Meeting on Recent Methods in Nonlinear Analysis (Rome, (1978), 131.   Google Scholar

[9]

M. del Pino, M. Kowalczyk and J. Wei, On a conjecture by De Giorgi in dimensions 9 and higher,, in Symmetry for elliptic PDEs, 528 (2010), 115.  doi: 10.1090/conm/528/10418.  Google Scholar

[10]

E. Fabes, C. Kenig and R. Serapioni, The local regularity of solutions of degenerate elliptic equations,, Comm. Partial Differential Equations, 7 (1982), 77.  doi: 10.1080/03605308208820218.  Google Scholar

[11]

A. Farina, B. Sciunzi and E. Valdinoci, Bernstein and De Giorgi type problems: New results via a geometric approach,, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), 7 (2008), 741.   Google Scholar

[12]

A. Farina and E. Valdinoci, The state of the art for a conjecture of De Giorgi and related problems,, in Recent progress on reaction-diffusion systems and viscosity solutions, (2009), 74.  doi: 10.1142/9789812834744_0004.  Google Scholar

[13]

N. Ghoussoub and C. Gui, On a conjecture of De Giorgi and some related problems,, Math. Ann., 311 (1998), 481.  doi: 10.1007/s002080050196.  Google Scholar

[14]

B. Muckenhoupt, Weighted norm inequalities for the Hardy maximal function,, Trans. Amer. Math. Soc., 165 (1972), 207.  doi: 10.1090/S0002-9947-1972-0293384-6.  Google Scholar

[15]

M. Novaga, D. Pallara and Y. Sire, A fractional isoperimetric problem in the Wiener space,, J. Anal. Math., ().   Google Scholar

[16]

O. Savin, Regularity of flat level sets in phase transitions,, Ann. of Math. (2), 169 (2009), 41.  doi: 10.4007/annals.2009.169.41.  Google Scholar

[17]

I. Shigekawa, Stochastic Analysis,, American Mathematical Society, (2004).   Google Scholar

[18]

Y. Sire and E. Valdinoci, Fractional Laplacian phase transitions and boundary reactions: A geometric inequality and a symmetry result,, J. Funct. Anal., 256 (2009), 1842.  doi: 10.1016/j.jfa.2009.01.020.  Google Scholar

[19]

P. Sternberg and K. Zumbrun, A Poincaré inequality with applications to volume-constrained area-minimizing surfaces,, J. Reine Angew. Math., 503 (1998), 63.   Google Scholar

[20]

P. Sternberg and K. Zumbrun, Connectivity of phase boundaries in strictly convex domains,, Arch. Rational Mech. Anal., 141 (1998), 375.  doi: 10.1007/s002050050081.  Google Scholar

[21]

P. R. Stinga and J. L. Torrea, Extension problem and Harnack's inequality for some fractional operators,, Comm. Partial Differential Equations, 35 (2010), 2092.  doi: 10.1080/03605301003735680.  Google Scholar

[22]

K. Yosida, Functional Analysis. Sixth Edition,, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], (1980).   Google Scholar

show all references

References:
[1]

G. Alberti, L. Ambrosio and X. Cabré, On a long-standing conjecture of E. De Giorgi: Symmetry in 3D for general nonlinearities and a local minimality property,, Acta Appl. Math., 65 (2001), 9.  doi: 10.1023/A:1010602715526.  Google Scholar

[2]

L. Ambrosio and X. Cabré, Entire solutions of semilinear elliptic equations in $\mathbb R^3$ and a conjecture of De Giorgi,, J. Amer. Math. Soc., 13 (2000), 725.  doi: 10.1090/S0894-0347-00-00345-3.  Google Scholar

[3]

V. I. Bogachev, Gaussian Measures,, Mathematical Surveys and Monographs, 62 (1998).  doi: 10.1090/surv/062.  Google Scholar

[4]

X. Cabré and E. Cinti, Sharp energy estimates for nonlinear fractional diffusion equations,, Calc. Var. Partial Differential Equations, 49 (2014), 233.  doi: 10.1007/s00526-012-0580-6.  Google Scholar

[5]

L. Caffarelli and L. Silvestre, An extension problem related to the fractional Laplacian,, Comm. Partial Differential Equations, 32 (2007), 1245.  doi: 10.1080/03605300600987306.  Google Scholar

[6]

A. Cesaroni, M. Novaga and A. Pinamonti, One-dimensional symmetry for semilinear equations with unbounded drift., Comm. Pure Appl. Analysis, 12 (2013), 2203.  doi: 10.3934/cpaa.2013.12.2203.  Google Scholar

[7]

A. Cesaroni, M. Novaga and E. Valdinoci, A symmetry result for the Ornstein-Uhlenbeck operator,, Discrete Contin. Dyn. Syst.-A, 34 (2014), 2451.  doi: 10.3934/dcds.2014.34.2451.  Google Scholar

[8]

E. De Giorgi, Convergence problems for functionals and operators,, in: Proceedings of the International Meeting on Recent Methods in Nonlinear Analysis (Rome, (1978), 131.   Google Scholar

[9]

M. del Pino, M. Kowalczyk and J. Wei, On a conjecture by De Giorgi in dimensions 9 and higher,, in Symmetry for elliptic PDEs, 528 (2010), 115.  doi: 10.1090/conm/528/10418.  Google Scholar

[10]

E. Fabes, C. Kenig and R. Serapioni, The local regularity of solutions of degenerate elliptic equations,, Comm. Partial Differential Equations, 7 (1982), 77.  doi: 10.1080/03605308208820218.  Google Scholar

[11]

A. Farina, B. Sciunzi and E. Valdinoci, Bernstein and De Giorgi type problems: New results via a geometric approach,, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), 7 (2008), 741.   Google Scholar

[12]

A. Farina and E. Valdinoci, The state of the art for a conjecture of De Giorgi and related problems,, in Recent progress on reaction-diffusion systems and viscosity solutions, (2009), 74.  doi: 10.1142/9789812834744_0004.  Google Scholar

[13]

N. Ghoussoub and C. Gui, On a conjecture of De Giorgi and some related problems,, Math. Ann., 311 (1998), 481.  doi: 10.1007/s002080050196.  Google Scholar

[14]

B. Muckenhoupt, Weighted norm inequalities for the Hardy maximal function,, Trans. Amer. Math. Soc., 165 (1972), 207.  doi: 10.1090/S0002-9947-1972-0293384-6.  Google Scholar

[15]

M. Novaga, D. Pallara and Y. Sire, A fractional isoperimetric problem in the Wiener space,, J. Anal. Math., ().   Google Scholar

[16]

O. Savin, Regularity of flat level sets in phase transitions,, Ann. of Math. (2), 169 (2009), 41.  doi: 10.4007/annals.2009.169.41.  Google Scholar

[17]

I. Shigekawa, Stochastic Analysis,, American Mathematical Society, (2004).   Google Scholar

[18]

Y. Sire and E. Valdinoci, Fractional Laplacian phase transitions and boundary reactions: A geometric inequality and a symmetry result,, J. Funct. Anal., 256 (2009), 1842.  doi: 10.1016/j.jfa.2009.01.020.  Google Scholar

[19]

P. Sternberg and K. Zumbrun, A Poincaré inequality with applications to volume-constrained area-minimizing surfaces,, J. Reine Angew. Math., 503 (1998), 63.   Google Scholar

[20]

P. Sternberg and K. Zumbrun, Connectivity of phase boundaries in strictly convex domains,, Arch. Rational Mech. Anal., 141 (1998), 375.  doi: 10.1007/s002050050081.  Google Scholar

[21]

P. R. Stinga and J. L. Torrea, Extension problem and Harnack's inequality for some fractional operators,, Comm. Partial Differential Equations, 35 (2010), 2092.  doi: 10.1080/03605301003735680.  Google Scholar

[22]

K. Yosida, Functional Analysis. Sixth Edition,, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], (1980).   Google Scholar

[1]

Mostafa Mbekhta. Representation and approximation of the polar factor of an operator on a Hilbert space. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020463

[2]

Federico Rodriguez Hertz, Zhiren Wang. On $ \epsilon $-escaping trajectories in homogeneous spaces. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 329-357. doi: 10.3934/dcds.2020365

[3]

Noah Stevenson, Ian Tice. A truncated real interpolation method and characterizations of screened Sobolev spaces. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5509-5566. doi: 10.3934/cpaa.2020250

[4]

Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of a Sobolev type impulsive functional evolution system in Banach spaces. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020049

[5]

Zedong Yang, Guotao Wang, Ravi P. Agarwal, Haiyong Xu. Existence and nonexistence of entire positive radial solutions for a class of Schrödinger elliptic systems involving a nonlinear operator. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020436

[6]

Soniya Singh, Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of second order impulsive systems with state-dependent delay in Banach spaces. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020103

[7]

Abdelghafour Atlas, Mostafa Bendahmane, Fahd Karami, Driss Meskine, Omar Oubbih. A nonlinear fractional reaction-diffusion system applied to image denoising and decomposition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020321

[8]

Yahia Zare Mehrjerdi. A new methodology for solving bi-criterion fractional stochastic programming. Numerical Algebra, Control & Optimization, 2020  doi: 10.3934/naco.2020054

[9]

Serena Dipierro, Benedetta Pellacci, Enrico Valdinoci, Gianmaria Verzini. Time-fractional equations with reaction terms: Fundamental solutions and asymptotics. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 257-275. doi: 10.3934/dcds.2020137

[10]

Bahaaeldin Abdalla, Thabet Abdeljawad. Oscillation criteria for kernel function dependent fractional dynamic equations. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020443

[11]

Reza Chaharpashlou, Abdon Atangana, Reza Saadati. On the fuzzy stability results for fractional stochastic Volterra integral equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020432

[12]

Leilei Wei, Yinnian He. A fully discrete local discontinuous Galerkin method with the generalized numerical flux to solve the tempered fractional reaction-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020319

[13]

Maoding Zhen, Binlin Zhang, Vicenţiu D. Rădulescu. Normalized solutions for nonlinear coupled fractional systems: Low and high perturbations in the attractive case. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020379

[14]

S. Sadeghi, H. Jafari, S. Nemati. Solving fractional Advection-diffusion equation using Genocchi operational matrix based on Atangana-Baleanu derivative. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020435

[15]

Hoang The Tuan. On the asymptotic behavior of solutions to time-fractional elliptic equations driven by a multiplicative white noise. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020318

[16]

Christopher S. Goodrich, Benjamin Lyons, Mihaela T. Velcsov. Analytical and numerical monotonicity results for discrete fractional sequential differences with negative lower bound. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020269

[17]

Lihong Zhang, Wenwen Hou, Bashir Ahmad, Guotao Wang. Radial symmetry for logarithmic Choquard equation involving a generalized tempered fractional $ p $-Laplacian. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020445

[18]

Omid Nikan, Seyedeh Mahboubeh Molavi-Arabshai, Hossein Jafari. Numerical simulation of the nonlinear fractional regularized long-wave model arising in ion acoustic plasma waves. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020466

[19]

Xuefeng Zhang, Yingbo Zhang. Fault-tolerant control against actuator failures for uncertain singular fractional order systems. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 1-12. doi: 10.3934/naco.2020011

[20]

Gongbao Li, Tao Yang. Improved Sobolev inequalities involving weighted Morrey norms and the existence of nontrivial solutions to doubly critical elliptic systems involving fractional Laplacian and Hardy terms. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020469

2019 Impact Factor: 1.233

Metrics

  • PDF downloads (46)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]