August  2016, 9(4): 1009-1023. doi: 10.3934/dcdss.2016039

Characterizations of uniform hyperbolicity and spectra of CMV matrices

1. 

Department of Mathematics, Rice University, Houston, TX 77005, United States

2. 

Department of Mathematics, Virginia Tech, Blacksburg, VA 24061, United States

3. 

Department of Mathematics, University of Toronto, Toronto, Ontario M5S 2E4, Canada

Received  September 2014 Revised  July 2015 Published  August 2016

We provide an elementary proof of the equivalence of various notions of uniform hyperbolicity for a class of GL$(2,\mathbb{C})$ cocycles and establish a Johnson-type theorem for extended CMV matrices, relating the spectrum to the set of points on the unit circle for which the associated Szegő cocycle is not uniformly hyperbolic.
Citation: David Damanik, Jake Fillman, Milivoje Lukic, William Yessen. Characterizations of uniform hyperbolicity and spectra of CMV matrices. Discrete and Continuous Dynamical Systems - S, 2016, 9 (4) : 1009-1023. doi: 10.3934/dcdss.2016039
References:
[1]

Ju. M. Berezanskii, Expansions in Eigenfuncions of Selfadjoint Operators, Amer. Math. Soc., Providence, 1968.

[2]

J. Bochi and N. Gourmelon, Some characterizations of domination, Math. Z., 263 (2009), 221-231. doi: 10.1007/s00209-009-0494-y.

[3]

D. Damanik, J. Fillman, M. Lukic and W. Yessen, Uniform hyperbolicity for Szegő cocycles and applications to random CMV matrices and the Ising model, Int. Math. Res. Not., 2015 (2015), 7110-7129. doi: 10.1093/imrn/rnu158.

[4]

D. Damanik, J. Fillman and D. C. Ong, Spreading estimates for quantum walks on the integer lattice via power-law bounds on transfer matrices, J. Math. Pures Appl., 105 (2016), 293-341. doi: 10.1016/j.matpur.2015.11.002.

[5]

J. Geronimo and R. Johnson, Rotation number associated with difference equations satisfied by polynomials orthogonal on the unit circle, J. Differential Equations, 132 (1996), 140-178. doi: 10.1006/jdeq.1996.0175.

[6]

F. Gesztesy and M. Zinchenko, Weyl-Titchmarsh theory for CMV operators associated with orthogonal polynomials on the unit circle, J. Approx. Theory, 139 (2006), 172-213. doi: 10.1016/j.jat.2005.08.002.

[7]

R. Johnson, Exponential dichotomy, rotation number, and linear differential operators with bounded coefficients, J. Diff. Eq., 61 (1986), 54-78. doi: 10.1016/0022-0396(86)90125-7.

[8]

Y. Last and B. Simon, Eigenfunctions, transfer matrices, and absolutely continuous spectrum of one-dimensional Schrödinger operators, Invent. Math., 135 (1999), 329-367. doi: 10.1007/s002220050288.

[9]

M. Lukic and D. Ong, Generalized Prüfer variables for perturbations of Jacobi and CMV matrices, J. Math. Anal. Appl., in press. DOI:10.1016/j.jmaa.2016.07.036. (arXiv:1409.7116).

[10]

P. Munger and D. Ong, The Hölder continuity of spectral measures of an extended CMV matrix, J. Math. Phys., 55 (2014), 093507, 10 pp. doi: 10.1063/1.4895762.

[11]

D. Ong, Purely singular continuous spectrum for CMV operators generated by subshifts, J. Stat. Phys., 155 (2014), 763-776. doi: 10.1007/s10955-014-0974-2.

[12]

M. Reed and B. Simon, Methods of Modern Mathematical Physics, I: Functional Analysis, Academic Press, New York, 1972.

[13]

R. Sacker and G. Sell, Existence of dichotomies and invariant splittings for linear differential systems I., J. Diff. Eq., 15 (1974), 429-458. doi: 10.1016/0022-0396(74)90067-9.

[14]

R. Sacker and G. Sell, A spectral theory for linear differential systems, J. Diff. Eq., 27 (1978), 320-358. doi: 10.1016/0022-0396(78)90057-8.

[15]

J. Selgrade, Isolated invariant sets for flows on vector bundles, Trans. Amer. Math. Soc., 203 (1975), 359-390. doi: 10.1090/S0002-9947-1975-0368080-X.

[16]

B. Simon, Orthogonal Polynomials on the Unit Circle. Part 1. Classical Theory, American Mathematical Society Colloquium Publications 54, Part 1, American Mathematical Society, Providence, RI, 2005.

[17]

J.-C. Yoccoz, Some questions and remarks about SL$(2,\mathbbR)$ cocycles, Modern Dynamical Systems and Applications, 447-458, Cambridge Univ. Press, Cambridge, 2004.

[18]

Z. Zhang, Resolvent set of Schrödinger operators and uniform hyperbolicity, preprint, (arXiv:1305.4226).

show all references

References:
[1]

Ju. M. Berezanskii, Expansions in Eigenfuncions of Selfadjoint Operators, Amer. Math. Soc., Providence, 1968.

[2]

J. Bochi and N. Gourmelon, Some characterizations of domination, Math. Z., 263 (2009), 221-231. doi: 10.1007/s00209-009-0494-y.

[3]

D. Damanik, J. Fillman, M. Lukic and W. Yessen, Uniform hyperbolicity for Szegő cocycles and applications to random CMV matrices and the Ising model, Int. Math. Res. Not., 2015 (2015), 7110-7129. doi: 10.1093/imrn/rnu158.

[4]

D. Damanik, J. Fillman and D. C. Ong, Spreading estimates for quantum walks on the integer lattice via power-law bounds on transfer matrices, J. Math. Pures Appl., 105 (2016), 293-341. doi: 10.1016/j.matpur.2015.11.002.

[5]

J. Geronimo and R. Johnson, Rotation number associated with difference equations satisfied by polynomials orthogonal on the unit circle, J. Differential Equations, 132 (1996), 140-178. doi: 10.1006/jdeq.1996.0175.

[6]

F. Gesztesy and M. Zinchenko, Weyl-Titchmarsh theory for CMV operators associated with orthogonal polynomials on the unit circle, J. Approx. Theory, 139 (2006), 172-213. doi: 10.1016/j.jat.2005.08.002.

[7]

R. Johnson, Exponential dichotomy, rotation number, and linear differential operators with bounded coefficients, J. Diff. Eq., 61 (1986), 54-78. doi: 10.1016/0022-0396(86)90125-7.

[8]

Y. Last and B. Simon, Eigenfunctions, transfer matrices, and absolutely continuous spectrum of one-dimensional Schrödinger operators, Invent. Math., 135 (1999), 329-367. doi: 10.1007/s002220050288.

[9]

M. Lukic and D. Ong, Generalized Prüfer variables for perturbations of Jacobi and CMV matrices, J. Math. Anal. Appl., in press. DOI:10.1016/j.jmaa.2016.07.036. (arXiv:1409.7116).

[10]

P. Munger and D. Ong, The Hölder continuity of spectral measures of an extended CMV matrix, J. Math. Phys., 55 (2014), 093507, 10 pp. doi: 10.1063/1.4895762.

[11]

D. Ong, Purely singular continuous spectrum for CMV operators generated by subshifts, J. Stat. Phys., 155 (2014), 763-776. doi: 10.1007/s10955-014-0974-2.

[12]

M. Reed and B. Simon, Methods of Modern Mathematical Physics, I: Functional Analysis, Academic Press, New York, 1972.

[13]

R. Sacker and G. Sell, Existence of dichotomies and invariant splittings for linear differential systems I., J. Diff. Eq., 15 (1974), 429-458. doi: 10.1016/0022-0396(74)90067-9.

[14]

R. Sacker and G. Sell, A spectral theory for linear differential systems, J. Diff. Eq., 27 (1978), 320-358. doi: 10.1016/0022-0396(78)90057-8.

[15]

J. Selgrade, Isolated invariant sets for flows on vector bundles, Trans. Amer. Math. Soc., 203 (1975), 359-390. doi: 10.1090/S0002-9947-1975-0368080-X.

[16]

B. Simon, Orthogonal Polynomials on the Unit Circle. Part 1. Classical Theory, American Mathematical Society Colloquium Publications 54, Part 1, American Mathematical Society, Providence, RI, 2005.

[17]

J.-C. Yoccoz, Some questions and remarks about SL$(2,\mathbbR)$ cocycles, Modern Dynamical Systems and Applications, 447-458, Cambridge Univ. Press, Cambridge, 2004.

[18]

Z. Zhang, Resolvent set of Schrödinger operators and uniform hyperbolicity, preprint, (arXiv:1305.4226).

[1]

He Zhang, John Harlim, Xiantao Li. Estimating linear response statistics using orthogonal polynomials: An RKHS formulation. Foundations of Data Science, 2020, 2 (4) : 443-485. doi: 10.3934/fods.2020021

[2]

Leonid Golinskii, Mikhail Kudryavtsev. An inverse spectral theory for finite CMV matrices. Inverse Problems and Imaging, 2010, 4 (1) : 93-110. doi: 10.3934/ipi.2010.4.93

[3]

Boris Hasselblatt, Yakov Pesin, Jörg Schmeling. Pointwise hyperbolicity implies uniform hyperbolicity. Discrete and Continuous Dynamical Systems, 2014, 34 (7) : 2819-2827. doi: 10.3934/dcds.2014.34.2819

[4]

Mickaël Kourganoff. Uniform hyperbolicity in nonflat billiards. Discrete and Continuous Dynamical Systems, 2018, 38 (3) : 1145-1160. doi: 10.3934/dcds.2018048

[5]

Yakov Pesin, Vaughn Climenhaga. Open problems in the theory of non-uniform hyperbolicity. Discrete and Continuous Dynamical Systems, 2010, 27 (2) : 589-607. doi: 10.3934/dcds.2010.27.589

[6]

Dean Crnković, Bernardo Gabriel Rodrigues, Sanja Rukavina, Loredana Simčić. Self-orthogonal codes from orbit matrices of 2-designs. Advances in Mathematics of Communications, 2013, 7 (2) : 161-174. doi: 10.3934/amc.2013.7.161

[7]

Dean Crnković, Ronan Egan, Andrea Švob. Self-orthogonal codes from orbit matrices of Seidel and Laplacian matrices of strongly regular graphs. Advances in Mathematics of Communications, 2020, 14 (4) : 591-602. doi: 10.3934/amc.2020032

[8]

Boris Kalinin, Anatole Katok. Measure rigidity beyond uniform hyperbolicity: invariant measures for cartan actions on tori. Journal of Modern Dynamics, 2007, 1 (1) : 123-146. doi: 10.3934/jmd.2007.1.123

[9]

Wilhelm Schlag. Regularity and convergence rates for the Lyapunov exponents of linear cocycles. Journal of Modern Dynamics, 2013, 7 (4) : 619-637. doi: 10.3934/jmd.2013.7.619

[10]

Boris Kalinin, Victoria Sadovskaya. Linear cocycles over hyperbolic systems and criteria of conformality. Journal of Modern Dynamics, 2010, 4 (3) : 419-441. doi: 10.3934/jmd.2010.4.419

[11]

Darren C. Ong. Orthogonal polynomials on the unit circle with quasiperiodic Verblunsky coefficients have generic purely singular continuous spectrum. Conference Publications, 2013, 2013 (special) : 605-609. doi: 10.3934/proc.2013.2013.605

[12]

Mahesh G. Nerurkar, Héctor J. Sussmann. Construction of ergodic cocycles that are fundamental solutions to linear systems of a special form. Journal of Modern Dynamics, 2007, 1 (2) : 205-253. doi: 10.3934/jmd.2007.1.205

[13]

Yajuan Zang, Guangzhou Chen, Kejun Chen, Zihong Tian. Further results on 2-uniform states arising from irredundant orthogonal arrays. Advances in Mathematics of Communications, 2022, 16 (2) : 231-247. doi: 10.3934/amc.2020109

[14]

Boris Kalinin, Anatole Katok, Federico Rodriguez Hertz. Errata to "Measure rigidity beyond uniform hyperbolicity: Invariant measures for Cartan actions on tori" and "Uniqueness of large invariant measures for $\Zk$ actions with Cartan homotopy data". Journal of Modern Dynamics, 2010, 4 (1) : 207-209. doi: 10.3934/jmd.2010.4.207

[15]

Marcin Mazur, Jacek Tabor, Piotr Kościelniak. Semi-hyperbolicity and hyperbolicity. Discrete and Continuous Dynamical Systems, 2008, 20 (4) : 1029-1038. doi: 10.3934/dcds.2008.20.1029

[16]

Aihua Fan, Jörg Schmeling, Weixiao Shen. $ L^\infty $-estimation of generalized Thue-Morse trigonometric polynomials and ergodic maximization. Discrete and Continuous Dynamical Systems, 2021, 41 (1) : 297-327. doi: 10.3934/dcds.2020363

[17]

Kishan Chand Gupta, Sumit Kumar Pandey, Indranil Ghosh Ray, Susanta Samanta. Cryptographically significant mds matrices over finite fields: A brief survey and some generalized results. Advances in Mathematics of Communications, 2019, 13 (4) : 779-843. doi: 10.3934/amc.2019045

[18]

Mauricio Poletti. Stably positive Lyapunov exponents for symplectic linear cocycles over partially hyperbolic diffeomorphisms. Discrete and Continuous Dynamical Systems, 2018, 38 (10) : 5163-5188. doi: 10.3934/dcds.2018228

[19]

Yuzhou Tian, Yulin Zhao. Global phase portraits and bifurcation diagrams for reversible equivariant Hamiltonian systems of linear plus quartic homogeneous polynomials. Discrete and Continuous Dynamical Systems - B, 2021, 26 (6) : 2941-2956. doi: 10.3934/dcdsb.2020214

[20]

Stéphane Gaubert, Nikolas Stott. A convergent hierarchy of non-linear eigenproblems to compute the joint spectral radius of nonnegative matrices. Mathematical Control and Related Fields, 2020, 10 (3) : 573-590. doi: 10.3934/mcrf.2020011

2020 Impact Factor: 2.425

Metrics

  • PDF downloads (186)
  • HTML views (1)
  • Cited by (2)

[Back to Top]