August  2016, 9(4): 1039-1068. doi: 10.3934/dcdss.2016041

Piecewise smooth systems near a co-dimension 2 discontinuity manifold: Can one say what should happen?

1. 

School of Mathematics, Georgia Institute of Technology, Atlanta, GA 30332, United States

2. 

Dipartimento di Matematica, University of Bari, I-70125, Bari, Italy

Received  August 2015 Revised  March 2016 Published  August 2016

In this work we attempt to understand what behavior one should expect of a solution trajectory near $\Sigma$ when $\Sigma$ is attractive, what to expect when $\Sigma$ ceases to be attractive (at generic exit points), and finally we also contrast and compare the behavior of some regularizations proposed in the literature, whereby the piecewise smooth system is replaced by a smooth differential system.
    Through analysis and experiments in $\mathbb{R}^3$ and $\mathbb{R}^4$, we will confirm some known facts and provide some important insight: (i) when $\Sigma$ is attractive, a solution trajectory remains near $\Sigma$, viz. sliding on $\Sigma$ is an appropriate idealization (though one cannot a priori decide which sliding vector field should be selected); (ii) when $\Sigma$ loses attractivity (at first order exit conditions), a typical solution trajectory leaves a neighborhood of $\Sigma$; (iii) there is no obvious way to regularize the system so that the regularized trajectory will remain near $\Sigma$ while $\Sigma$ is attractive, and so that it will be leaving (a neighborhood of) $\Sigma$ when $\Sigma$ looses attractivity.
    We reach the above conclusions by considering exclusively the given piecewise smooth system, without superimposing any assumption on what kind of dynamics near $\Sigma$ should have been taking place.
Citation: Luca Dieci, Cinzia Elia. Piecewise smooth systems near a co-dimension 2 discontinuity manifold: Can one say what should happen?. Discrete and Continuous Dynamical Systems - S, 2016, 9 (4) : 1039-1068. doi: 10.3934/dcdss.2016041
References:
[1]

J. C. Alexander and T. Seidman, Sliding modes in intersecting switching surfaces, I: Blending. Houston J. Math., 24 (1998), 545-569.

[2]

J. C. Alexander and T. Seidman, Sliding modes in intersecting switching surfaces, II: Hysteresis. Houston J. Math., 25 (1999), 185-211.

[3]

Z. Artstein, On singularly perturbed ordinary differential equations with measure-valued limits, Mathematics Bohemica, 127 (2002), 139-152.

[4]

J. Cortes, Discontinuous Dynamical Systems: A tutorial on solutions, nonsmooth analysis, and stability, IEEE Control Systems Magazine, 28 (2008), 36-73. doi: 10.1109/MCS.2008.919306.

[5]

N. Del Buono, C. Elia and L. Lopez, On the equivalence between the sigmoidal approach and Utkin's approach for models of gene regulatory networks, SIAM J. Applied Dynamical Systems, 13 (2014), 1270-1292. doi: 10.1137/130950483.

[6]

M. di Bernardo, C. J. Budd, A. R. Champneys and P. Kowalczyk, Piecewise-smooth Dynamical Systems. Theory and Applications. Applied Mathematical Sciences 163. Springer-Verlag, Berlin, 2008.

[7]

L. Dieci, Sliding motion on the intersection of two manifolds: Spirally attractive case, Communications in Nonlinear Science and Numerical Simulation, 26 (2015), 65-74. doi: 10.1016/j.cnsns.2015.02.002.

[8]

L. Dieci and F. Difonzo, A Comparison of Filippov sliding vector fields in co-dimension $2$, Journal of Computational and Applied Mathematics, 262 (2014), 161-179. Corrigendum in Journal of Computational and Applied Mathematics, 272 (2014), 273-273. doi: 10.1016/j.cam.2013.10.055.

[9]

L. Dieci and F. Difonzo, The Moments sliding vector field on the intersection of two manifolds, Journal of Dynamics and Differential Equations, (2015), 1-33. doi: 10.1007/s10884-015-9439-9.

[10]

L. Dieci, C. Elia and L. Lopez, A Filippov sliding vector field on an attracting co-dimension 2 discontinuity surface, and a limited loss-of-attractivity analysis, J. Differential Equations, 254 (2013), 1800-1832. doi: 10.1016/j.jde.2012.11.007.

[11]

L. Dieci, C. Elia and L. Lopez, Sharp sufficient attractivity conditions for sliding on a co-dimension 2 discontinuity surface, Mathematics and Computers in Simulations, 110 (2015), 3-14. doi: 10.1016/j.matcom.2013.12.005.

[12]

L. Dieci, C. Elia and L. Lopez, Uniqueness of Filippov sliding vector field on the intersection of two surfaces in $\mathbbR^3$ and implications for stability of periodic orbits, J. Nonlin. Science, 25 (2015), 1453-1471. doi: 10.1007/s00332-015-9265-6.

[13]

L. Dieci and N. Guglielmi, Regularizing piecewise smooth differential systems: Co-dimension 2 discontinuity surface, J. Dynamics and Differential Equations, 25 (2013), 71-94. doi: 10.1007/s10884-013-9287-4.

[14]

A. Dontchev and F. Lempio, Difference methods for differential inclusions: A survey, SIAM REVIEW, 34 (1992), 263-294. doi: 10.1137/1034050.

[15]

A. F. Filippov, Differential Equations with Discontinuous Right-Hand Sides, Mathematics and Its Applications, Kluwer Academic, Dordrecht, 1988. doi: 10.1007/978-94-015-7793-9.

[16]

N. Guglielmi and E. Hairer, Classification of hidden dynamics in discontinuous dynamical systems, SIADS, 14 (2015), 1454-1477. doi: 10.1137/15100326X.

[17]

M. Jeffrey, Dynamics at a switching intersection: Hierarchy, isonomy, and multiple sliding, SIAM J. Applied Dyn. Systems, 13 (2014), 1082-1105. doi: 10.1137/13093368X.

[18]

J. Llibre, P. R. Silva and M. A. Teixeira, Regularization of discontinuous vector fields on $\mathbbR^3$ via singular perturbation, J. Dynam. Differential Equations, 19 (2007), 309-331. doi: 10.1007/s10884-006-9057-7.

[19]

A. Machina, R. Edwards and P. van den Driessche, Singular dynamics in gene network models, SIAM J. Appl. Dyn. Syst., 12 (2013), 95-125. doi: 10.1137/120872747.

[20]

E. Plahte and S. Kjóglum, Analysis and generic properties of gene regulatory networks with graded response functions, Physica D, 201 (2005), 150-176. doi: 10.1016/j.physd.2004.11.014.

[21]

A. Polynikis, S. J. Hogan and M. di Bernardo, Comparing different ODE modelling approaches for gene regulatory networks, Journal of Theoretical Biology, 261 (2009), 511-530. doi: 10.1016/j.jtbi.2009.07.040.

[22]

T. Seidman, Some limit results for relays, Proc.s of World Congress of Nonlinear Analysts, Ed. V. Lakshmikantham, De Gruyter publisher, 1 (1996), 787-796.

[23]

T. Seidman, The residue of model reduction. The residue of model reduction, In Hybrid Systems III. Verification and Control, Lecture Notes in Comp. Sci. 1066; R. Alur, T.A. Henzinger, E.D. Sontag, eds. Springer-Verlag, Berlin, (1996), 201-207.

[24]

J. Sotomayor and M. A. Teixeira, Regularization of discontinuous vector field, In International Conference on Differential Equations, (1998), 207-223.

[25]

V. I. Utkin, Sliding Modes and Their Application in Variable Structure Systems. MIR Publisher, Moskow, 1978.

[26]

V. I. Utkin, Sliding Mode in Control and Optimization, Springer, Berlin, 1992. doi: 10.1007/978-3-642-84379-2.

show all references

References:
[1]

J. C. Alexander and T. Seidman, Sliding modes in intersecting switching surfaces, I: Blending. Houston J. Math., 24 (1998), 545-569.

[2]

J. C. Alexander and T. Seidman, Sliding modes in intersecting switching surfaces, II: Hysteresis. Houston J. Math., 25 (1999), 185-211.

[3]

Z. Artstein, On singularly perturbed ordinary differential equations with measure-valued limits, Mathematics Bohemica, 127 (2002), 139-152.

[4]

J. Cortes, Discontinuous Dynamical Systems: A tutorial on solutions, nonsmooth analysis, and stability, IEEE Control Systems Magazine, 28 (2008), 36-73. doi: 10.1109/MCS.2008.919306.

[5]

N. Del Buono, C. Elia and L. Lopez, On the equivalence between the sigmoidal approach and Utkin's approach for models of gene regulatory networks, SIAM J. Applied Dynamical Systems, 13 (2014), 1270-1292. doi: 10.1137/130950483.

[6]

M. di Bernardo, C. J. Budd, A. R. Champneys and P. Kowalczyk, Piecewise-smooth Dynamical Systems. Theory and Applications. Applied Mathematical Sciences 163. Springer-Verlag, Berlin, 2008.

[7]

L. Dieci, Sliding motion on the intersection of two manifolds: Spirally attractive case, Communications in Nonlinear Science and Numerical Simulation, 26 (2015), 65-74. doi: 10.1016/j.cnsns.2015.02.002.

[8]

L. Dieci and F. Difonzo, A Comparison of Filippov sliding vector fields in co-dimension $2$, Journal of Computational and Applied Mathematics, 262 (2014), 161-179. Corrigendum in Journal of Computational and Applied Mathematics, 272 (2014), 273-273. doi: 10.1016/j.cam.2013.10.055.

[9]

L. Dieci and F. Difonzo, The Moments sliding vector field on the intersection of two manifolds, Journal of Dynamics and Differential Equations, (2015), 1-33. doi: 10.1007/s10884-015-9439-9.

[10]

L. Dieci, C. Elia and L. Lopez, A Filippov sliding vector field on an attracting co-dimension 2 discontinuity surface, and a limited loss-of-attractivity analysis, J. Differential Equations, 254 (2013), 1800-1832. doi: 10.1016/j.jde.2012.11.007.

[11]

L. Dieci, C. Elia and L. Lopez, Sharp sufficient attractivity conditions for sliding on a co-dimension 2 discontinuity surface, Mathematics and Computers in Simulations, 110 (2015), 3-14. doi: 10.1016/j.matcom.2013.12.005.

[12]

L. Dieci, C. Elia and L. Lopez, Uniqueness of Filippov sliding vector field on the intersection of two surfaces in $\mathbbR^3$ and implications for stability of periodic orbits, J. Nonlin. Science, 25 (2015), 1453-1471. doi: 10.1007/s00332-015-9265-6.

[13]

L. Dieci and N. Guglielmi, Regularizing piecewise smooth differential systems: Co-dimension 2 discontinuity surface, J. Dynamics and Differential Equations, 25 (2013), 71-94. doi: 10.1007/s10884-013-9287-4.

[14]

A. Dontchev and F. Lempio, Difference methods for differential inclusions: A survey, SIAM REVIEW, 34 (1992), 263-294. doi: 10.1137/1034050.

[15]

A. F. Filippov, Differential Equations with Discontinuous Right-Hand Sides, Mathematics and Its Applications, Kluwer Academic, Dordrecht, 1988. doi: 10.1007/978-94-015-7793-9.

[16]

N. Guglielmi and E. Hairer, Classification of hidden dynamics in discontinuous dynamical systems, SIADS, 14 (2015), 1454-1477. doi: 10.1137/15100326X.

[17]

M. Jeffrey, Dynamics at a switching intersection: Hierarchy, isonomy, and multiple sliding, SIAM J. Applied Dyn. Systems, 13 (2014), 1082-1105. doi: 10.1137/13093368X.

[18]

J. Llibre, P. R. Silva and M. A. Teixeira, Regularization of discontinuous vector fields on $\mathbbR^3$ via singular perturbation, J. Dynam. Differential Equations, 19 (2007), 309-331. doi: 10.1007/s10884-006-9057-7.

[19]

A. Machina, R. Edwards and P. van den Driessche, Singular dynamics in gene network models, SIAM J. Appl. Dyn. Syst., 12 (2013), 95-125. doi: 10.1137/120872747.

[20]

E. Plahte and S. Kjóglum, Analysis and generic properties of gene regulatory networks with graded response functions, Physica D, 201 (2005), 150-176. doi: 10.1016/j.physd.2004.11.014.

[21]

A. Polynikis, S. J. Hogan and M. di Bernardo, Comparing different ODE modelling approaches for gene regulatory networks, Journal of Theoretical Biology, 261 (2009), 511-530. doi: 10.1016/j.jtbi.2009.07.040.

[22]

T. Seidman, Some limit results for relays, Proc.s of World Congress of Nonlinear Analysts, Ed. V. Lakshmikantham, De Gruyter publisher, 1 (1996), 787-796.

[23]

T. Seidman, The residue of model reduction. The residue of model reduction, In Hybrid Systems III. Verification and Control, Lecture Notes in Comp. Sci. 1066; R. Alur, T.A. Henzinger, E.D. Sontag, eds. Springer-Verlag, Berlin, (1996), 201-207.

[24]

J. Sotomayor and M. A. Teixeira, Regularization of discontinuous vector field, In International Conference on Differential Equations, (1998), 207-223.

[25]

V. I. Utkin, Sliding Modes and Their Application in Variable Structure Systems. MIR Publisher, Moskow, 1978.

[26]

V. I. Utkin, Sliding Mode in Control and Optimization, Springer, Berlin, 1992. doi: 10.1007/978-3-642-84379-2.

[1]

Dingheng Pi. Periodic orbits for double regularization of piecewise smooth systems with a switching manifold of codimension two. Discrete and Continuous Dynamical Systems - B, 2022, 27 (2) : 1055-1073. doi: 10.3934/dcdsb.2021080

[2]

Todd Young. Partially hyperbolic sets from a co-dimension one bifurcation. Discrete and Continuous Dynamical Systems, 1995, 1 (2) : 253-275. doi: 10.3934/dcds.1995.1.253

[3]

Dingheng Pi. Limit cycles for regularized piecewise smooth systems with a switching manifold of codimension two. Discrete and Continuous Dynamical Systems - B, 2019, 24 (2) : 881-905. doi: 10.3934/dcdsb.2018211

[4]

Antonella Zanna. Symplectic P-stable additive Runge—Kutta methods. Journal of Computational Dynamics, 2022, 9 (2) : 299-328. doi: 10.3934/jcd.2021030

[5]

Alan Mackey, Theodore Kolokolnikov, Andrea L. Bertozzi. Two-species particle aggregation and stability of co-dimension one solutions. Discrete and Continuous Dynamical Systems - B, 2014, 19 (5) : 1411-1436. doi: 10.3934/dcdsb.2014.19.1411

[6]

Sihong Shao, Huazhong Tang. Higher-order accurate Runge-Kutta discontinuous Galerkin methods for a nonlinear Dirac model. Discrete and Continuous Dynamical Systems - B, 2006, 6 (3) : 623-640. doi: 10.3934/dcdsb.2006.6.623

[7]

Tao Li, Jaume Llibre. Limit cycles of piecewise polynomial differential systems with the discontinuity line xy = 0. Communications on Pure and Applied Analysis, 2021, 20 (11) : 3887-3909. doi: 10.3934/cpaa.2021136

[8]

Carles Bonet-Revés, Tere M-Seara. Regularization of sliding global bifurcations derived from the local fold singularity of Filippov systems. Discrete and Continuous Dynamical Systems, 2016, 36 (7) : 3545-3601. doi: 10.3934/dcds.2016.36.3545

[9]

Elisa Giesecke, Axel Kröner. Classification with Runge-Kutta networks and feature space augmentation. Journal of Computational Dynamics, 2021, 8 (4) : 495-520. doi: 10.3934/jcd.2021018

[10]

Yanli Han, Yan Gao. Determining the viability for hybrid control systems on a region with piecewise smooth boundary. Numerical Algebra, Control and Optimization, 2015, 5 (1) : 1-9. doi: 10.3934/naco.2015.5.1

[11]

Jianfeng Lv, Yan Gao, Na Zhao. The viability of switched nonlinear systems with piecewise smooth Lyapunov functions. Journal of Industrial and Management Optimization, 2021, 17 (4) : 1825-1843. doi: 10.3934/jimo.2020048

[12]

Jihua Yang, Liqin Zhao. Limit cycle bifurcations for piecewise smooth integrable differential systems. Discrete and Continuous Dynamical Systems - B, 2017, 22 (6) : 2417-2425. doi: 10.3934/dcdsb.2017123

[13]

Hebai Chen, Jaume Llibre, Yilei Tang. Centers of discontinuous piecewise smooth quasi–homogeneous polynomial differential systems. Discrete and Continuous Dynamical Systems - B, 2019, 24 (12) : 6495-6509. doi: 10.3934/dcdsb.2019150

[14]

D. J. W. Simpson, R. Kuske. Stochastically perturbed sliding motion in piecewise-smooth systems. Discrete and Continuous Dynamical Systems - B, 2014, 19 (9) : 2889-2913. doi: 10.3934/dcdsb.2014.19.2889

[15]

Kazuyuki Yagasaki. Application of the subharmonic Melnikov method to piecewise-smooth systems. Discrete and Continuous Dynamical Systems, 2013, 33 (5) : 2189-2209. doi: 10.3934/dcds.2013.33.2189

[16]

Shanshan Liu, Maoan Han. Bifurcation of limit cycles in a family of piecewise smooth systems via averaging theory. Discrete and Continuous Dynamical Systems - S, 2020, 13 (11) : 3115-3124. doi: 10.3934/dcdss.2020133

[17]

Meilan Cai, Maoan Han. Limit cycle bifurcations in a class of piecewise smooth cubic systems with multiple parameters. Communications on Pure and Applied Analysis, 2021, 20 (1) : 55-75. doi: 10.3934/cpaa.2020257

[18]

N. Chernov. Statistical properties of piecewise smooth hyperbolic systems in high dimensions. Discrete and Continuous Dynamical Systems, 1999, 5 (2) : 425-448. doi: 10.3934/dcds.1999.5.425

[19]

D. J. W. Simpson. On the stability of boundary equilibria in Filippov systems. Communications on Pure and Applied Analysis, 2021, 20 (9) : 3093-3111. doi: 10.3934/cpaa.2021097

[20]

Antonia Katzouraki, Tania Stathaki. Intelligent traffic control on internet-like topologies - integration of graph principles to the classic Runge--Kutta method. Conference Publications, 2009, 2009 (Special) : 404-415. doi: 10.3934/proc.2009.2009.404

2020 Impact Factor: 2.425

Metrics

  • PDF downloads (160)
  • HTML views (2)
  • Cited by (5)

Other articles
by authors

[Back to Top]