\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Normal forms à la Moser for aperiodically time-dependent Hamiltonians in the vicinity of a hyperbolic equilibrium

Abstract Related Papers Cited by
  • The classical theorem of Moser, on the existence of a normal form in the neighbourhood of a hyperbolic equilibrium, is extended to a class of real-analytic Hamiltonians with aperiodically time-dependent perturbations. A stronger result is obtained in the case in which the perturbing function exhibits a time decay.
    Mathematics Subject Classification: Primary: 37J40; Secondary: 70H09.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    L. Chierchia and G. Gallavotti, Drift and diffusion in phase space, Ann. Inst. H. Poincaré Phys. Théor., 60 (1994), 144pp.

    [2]

    A. Fortunati and S. Wiggins, Persistence of Diophantine flows for quadratic nearly integrable Hamiltonians under slowly decaying aperiodic time dependence, Regul. Chaotic Dyn., 19 (2014), 586-600.doi: 10.1134/S1560354714050062.

    [3]

    A. Fortunati and S. Wiggins, A Kolmogorov theorem for nearly integrable Poisson systems with asymptotically decaying time-dependent perturbation, Regul. Chaotic Dyn., 20 (2015), 476-485.doi: 10.1134/S1560354715040061.

    [4]

    G. Gallavotti, Hamilton-Jacobi's equation and Arnold's diffusion near invariant tori in a priori unstable isochronous systems, Rend. Sem. Mat. Univ. Politec. Torino, 55 (1997), 291-302 (1999), Jacobian conjecture and dynamical systems (Torino, 1997).

    [5]

    A. Giorgilli, On a Theorem of Lyapounov, Rendiconti dell'Istituto Lombardo Accademia di Scienze e Lettere, Classe di Scienze Matematiche e Naturali, 146 (2012), 133-160.

    [6]

    A. Giorgilli, Persistence of invariant tori., http://www.mat.unimi.it/users/antonio/hamsys/hamsys.html.

    [7]

    A. Giorgilli, Exponential stability of Hamiltonian systems, in Dynamical systems. Part I, Pubbl. Cent. Ric. Mat. Ennio Giorgi, Scuola Norm. Sup., Pisa, 2003, 87-198.

    [8]

    A. Giorgilli and E. Zehnder, Exponential stability for time dependent potentials, Z. Angew. Math. Phys., 43 (1992), 827-855.doi: 10.1007/BF00913410.

    [9]

    J. Moser, The analytic invariants of an area-preserving mapping near a hyperbolic fixed point, Comm. Pure Appl. Math., 9 (1956), 673-692.doi: 10.1002/cpa.3160090404.

  • 加载中
SHARE

Article Metrics

HTML views(522) PDF downloads(143) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return