\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

On the nonautonomous Hopf bifurcation problem

Abstract Related Papers Cited by
  • Under well-known conditions, a one-parameter family of two-dimensional, autonomous ordinary differential equations admits a supercritical\break Andronov-Hopf bifurcation. Let such a family be perturbed by a non-autonomous term. We analyze the sense in which and some conditions under which the Andronov-Hopf pattern persists under such a perturbation.
    Mathematics Subject Classification: Primary: 37B55; Secondary: 34D35, 34C45, 34F10.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    J. Aliste-Prieto and T. Jäger, Almost periodic structures and the semi-conjugacy problem, J. Differential Equations, 252 (2012), 4988-5001.doi: 10.1016/j.jde.2012.01.030.

    [2]

    V. Anagnostopoulou, T. Jäger and G. Keller, A model for the non-autonomous Hopf bifurcation, preprint, arXiv:1305.1579.

    [3]

    L. Arnold, Random Dynamical Systems, in Dynamical Systems, Fondazione C.I.M.E. 1994, ed. R. Johnson, Lecture Notes in Math., Springer-Verlag, Berlin, 1609 (1995), 1-43.doi: 10.1007/BFb0095238.

    [4]

    M. Bebutov, On dynamical systems in the space of continuous functions, Bull. Moscow Univ. Matematica, (1941), 1-52.

    [5]

    K. Bjerkäv and R. Johnson, Minimal subsets of projective flows, Discrete Contin. Dyn. Syst., 9 (2008), 493-516.doi: 10.3934/dcdsb.2008.9.493.

    [6]

    R. Botts, A. Homburg and T. Young, The Hopf bifurcation with bounded noise, Discrete Contin. Dyn. Syst., 32 (2012), 2997-3007.doi: 10.3934/dcds.2012.32.2997.

    [7]

    R. Bowen, Entropy for group endomorphisms and homogeneous spaces, Trans. Amer. Math. Soc., 153 (1971), 401-414.doi: 10.1090/S0002-9947-1971-0274707-X.

    [8]

    B. Braaksma and H. Broer, On a quasi-periodic Hopf bifurcation, Ann. Inst. H. Poincare Anal. Non Lineaire, 4 (1987), 115-168.

    [9]

    B. Braaksma, H. Broer and G. Huitema, Toward a quasi-periodic bifurcation theory, Memoirs A.M.S., 83 (1990), 83-167.

    [10]

    H. Broer, G. Huitema and M. Sevryuk, Quasi-periodic Motions in Families of Dynamical Systems. Order Amidst Chaos, Lecture Notes in Mathematics, 1645. Springer-Verlag, Berlin, 1996.

    [11]

    H. Broer, KAM-theory: Multiperiodicity in conservative and dissipative systems, Nieuw Archief v. Wiskunde, 14 (1996), 65-79.

    [12]

    L. Chierchia and C. Falcolini, Compensations in small divisors problems, Comm. Math. Phys., 175 (1996), 135-160.doi: 10.1007/BF02101627.

    [13]

    E. Coddington and N. Levinson, Theory of Ordinary Differential Equations, Mc Graw Hill, New York, 1955.

    [14]

    W. Coppel, Dichotomies in Stability Theory, Lecture Notes in Mathematics 377, Springer-Verlag, Berlin, 1978.

    [15]

    S. Diliberto, Perturbation theorems for periodic surfaces I, Rend. Circ. Math. Palermo, 9 (1960), 265-299.doi: 10.1007/BF02851248.

    [16]

    S. Diliberto, New results in periodic surfaces and the averaging principle, U.S.-Japanese seminar on Differential Equations, W.A. Benjamin Co., New York, 1967, 49-87.

    [17]

    R. Ellis, Lectures on Topological Dynamics, W.A. Benjamin Co., New York, 1969.

    [18]

    B. Fayad, Weak mixing for reparametrized linear flows on the torus, Ergodic Theory Dynam. Systems, 22 (2002), 187-201.doi: 10.1017/S0143385702000081.

    [19]

    B. Fayad, Analytic mixing reparametrizations of irrational flows, Ergodic Theory Dynam. Systems, 22 (2002), 437-468.doi: 10.1017/S0143385702000214.

    [20]

    H. Furstenberg, Strict ergodicity and transformations of the torus, Amer. Jour. Math., 83 (1961), 573-601.doi: 10.2307/2372899.

    [21]

    A. Gonzalez-Enriquez, A non-perturbative theorem on conjugation of torus diffeomorphisms to rigid rotations, preprint, 2005.

    [22]

    A. Gonzalez-Enriquez and J. Vano, Estimate of smoothing and composition with applications to conjugation problems, J. Dynam. Differential Equations, 20 (2008), 239-270.doi: 10.1007/s10884-006-9060-z.

    [23]

    W. Gottschalk and G. Hedlund, Topological Dynamics, AMS Colloquium Publications 36, Amer. Math. Soc., Providence USA, 1955.

    [24]

    M. Hirsch, C. Pugh and M. Shub, Invariant Manifolds, Lecture Notes in Math., 583 Springer-Verlag, New York, 1977.

    [25]

    W. Huang and Y. Yi, Almost periodically forced circle flows, J. Funct. Anal., 257 (2009), 832-902.doi: 10.1016/j.jfa.2008.12.005.

    [26]

    G. Iooss, Bifurcation of Maps and Applications, North Holland Math. Studies 36, Amsterdam, 1979.

    [27]

    R. Johnson, Concerning a theorem of Sell, J. Differential Equations, 30 (1978), 324-339.doi: 10.1016/0022-0396(78)90004-9.

    [28]

    R. Johnson, P. Kloeden and R. Pavani, Two-step transition in nonautonomous bifurcations: an explanation, Stoch. Dyn., 2 (2002), 67-92.doi: 10.1142/S0219493702000297.

    [29]

    R. Johnson and Y. Yi, Hopf bifurcation from non-periodic solutions of differential equations II, J. Differential Equations, 107 (1994), 310-340.doi: 10.1006/jdeq.1994.1015.

    [30]

    J. Hale and H. Ko\ccak, Dynamics and Bifurcations, Texts in Applied Mathematics, 3, Springer-Verlag, New York, 1991.doi: 10.1007/978-1-4612-4426-4.

    [31]

    A. Katok and B. Hasselblatt, Introduction to the Modern Theory of Dynamical Systems, Cambridge Univ. Press, Cambridge UK, 1995.doi: 10.1017/CBO9780511809187.

    [32]

    N. Krylov and N. Bogoliubov, La théorie générale de la measure dans son application à l'étude des systémes dynamiques de la méchanique non linéare, Ann. Math., 38 (1937), 65-113.

    [33]

    Y. Kuznetsov, Elements of Applied Bifurcation Theory, Springer-Verlag, Berlin, 1995.doi: 10.1007/978-1-4757-2421-9.

    [34]

    N. Levinson, Small periodic perturbations of an autonomous system with a stable orbit, Ann. Math., 52 (1950), 727-738.doi: 10.2307/1969445.

    [35]

    Y. Neimark, On some cases of periodic motions depending on parameters, Dokl. Akad. Nank. S.S.S.R., 129 (1959), 736-739.

    [36]

    V. Nemytskii and V. Stepanov, Qualitative Theory of Ordinary Differential Equations, Princeton Univ. Press, Princeton USA, 1960.

    [37]

    D. Ruelle and F. Takens, On the nature of turbulence, Comm. Math. Phys., 20 (1971), 167-192.doi: 10.1007/BF01646553.

    [38]

    R. Sacker, On Invariant Surfaces and Bifurcation of Periodic Solutions of Ordinary Differential Equations, Ph. D. thesis, IMM-NYU 333, Courant Istitute, New York University, 1964.

    [39]

    E. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton University Press, Princeton, N.J., 1970.

    [40]

    Y. Yi, A generalized integral manifold theorem, J. Differential Equations, 102 (1993), 153-187.doi: 10.1006/jdeq.1993.1026.

  • 加载中
SHARE

Article Metrics

HTML views(399) PDF downloads(196) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return