-
Previous Article
Forced linear oscillators and the dynamics of Euclidean group extensions
- DCDS-S Home
- This Issue
-
Next Article
Local study of a renormalization operator for 1D maps under quasiperiodic forcing
Formulas for generalized principal Lyapunov exponent for parabolic PDEs
1. | Faculty of Pure and Applied Mathematics, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, PL-50-370 Wrocław |
2. | Department of Mathematics & Statistics, Auburn University, Auburn, AL 36849 |
References:
[1] |
C. D. Aliprantis and K. C. Border, Infinite Dimensional Analysis. A Hitchhiker's Guide, third edition, Springer, Berlin, 2006. |
[2] |
J. Diestel and J. J. Uhl, Jr., Vector Measures, with a foreword by B. J. Pettis, Mathematical Surveys, No. 15, American Mathematical Society, Providence, R.I., 1977. |
[3] |
L. C. Evans, Partial Differential Equations, Grad. Stud. Math., 19, American Mathematical Society, Providence, R.I., 1998. |
[4] |
U. Krengel, Ergodic Theorems, Walter de Gruyter, Berlin, 1985.
doi: 10.1515/9783110844641. |
[5] |
J. Mierczyński, Estimates for principal Lyapunov exponents: A survey, Nonautonomous Dynamical Systems, 1 (2014), 137-162. |
[6] |
J. Mierczyński and W. Shen, Spectral Theory for Random and Nonautonomous Parabolic Equations and Applications, Chapman & Hall/CRC Monographs and Surveys in Pure and Applied Mathematics, Chapman & Hall/CRC, Boca Raton, FL, 2008.
doi: 10.1201/9781584888963. |
[7] |
J. Mierczyński and W. Shen, Principal Lyapunov exponents and principal Floquet spaces of positive random dynamical systems. I. General theory, Trans. Amer. Math. Soc., 365 (2013), 5329-5365.
doi: 10.1090/S0002-9947-2013-05814-X. |
[8] |
J. Mierczyński and W. Shen, Principal Lyapunov exponents and principal Floquet spaces of positive random dynamical systems. III. Parabolic equations and delay systems, J. Dynam. Differential Equations, 28 (2016), 1039-1079.
doi: 10.1007/s10884-015-9436-z. |
show all references
References:
[1] |
C. D. Aliprantis and K. C. Border, Infinite Dimensional Analysis. A Hitchhiker's Guide, third edition, Springer, Berlin, 2006. |
[2] |
J. Diestel and J. J. Uhl, Jr., Vector Measures, with a foreword by B. J. Pettis, Mathematical Surveys, No. 15, American Mathematical Society, Providence, R.I., 1977. |
[3] |
L. C. Evans, Partial Differential Equations, Grad. Stud. Math., 19, American Mathematical Society, Providence, R.I., 1998. |
[4] |
U. Krengel, Ergodic Theorems, Walter de Gruyter, Berlin, 1985.
doi: 10.1515/9783110844641. |
[5] |
J. Mierczyński, Estimates for principal Lyapunov exponents: A survey, Nonautonomous Dynamical Systems, 1 (2014), 137-162. |
[6] |
J. Mierczyński and W. Shen, Spectral Theory for Random and Nonautonomous Parabolic Equations and Applications, Chapman & Hall/CRC Monographs and Surveys in Pure and Applied Mathematics, Chapman & Hall/CRC, Boca Raton, FL, 2008.
doi: 10.1201/9781584888963. |
[7] |
J. Mierczyński and W. Shen, Principal Lyapunov exponents and principal Floquet spaces of positive random dynamical systems. I. General theory, Trans. Amer. Math. Soc., 365 (2013), 5329-5365.
doi: 10.1090/S0002-9947-2013-05814-X. |
[8] |
J. Mierczyński and W. Shen, Principal Lyapunov exponents and principal Floquet spaces of positive random dynamical systems. III. Parabolic equations and delay systems, J. Dynam. Differential Equations, 28 (2016), 1039-1079.
doi: 10.1007/s10884-015-9436-z. |
[1] |
Sylvia Novo, Carmen Núñez, Rafael Obaya, Ana M. Sanz. Skew-product semiflows for non-autonomous partial functional differential equations with delay. Discrete and Continuous Dynamical Systems, 2014, 34 (10) : 4291-4321. doi: 10.3934/dcds.2014.34.4291 |
[2] |
Bogdan Sasu, A. L. Sasu. Input-output conditions for the asymptotic behavior of linear skew-product flows and applications. Communications on Pure and Applied Analysis, 2006, 5 (3) : 551-569. doi: 10.3934/cpaa.2006.5.551 |
[3] |
P.E. Kloeden, Victor S. Kozyakin. The perturbation of attractors of skew-product flows with a shadowing driving system. Discrete and Continuous Dynamical Systems, 2001, 7 (4) : 883-893. doi: 10.3934/dcds.2001.7.883 |
[4] |
Saša Kocić. Reducibility of skew-product systems with multidimensional Brjuno base flows. Discrete and Continuous Dynamical Systems, 2011, 29 (1) : 261-283. doi: 10.3934/dcds.2011.29.261 |
[5] |
Tomás Caraballo, Alexandre N. Carvalho, Henrique B. da Costa, José A. Langa. Equi-attraction and continuity of attractors for skew-product semiflows. Discrete and Continuous Dynamical Systems - B, 2016, 21 (9) : 2949-2967. doi: 10.3934/dcdsb.2016081 |
[6] |
Davide Guidetti. Partial reconstruction of the source term in a linear parabolic initial problem with Dirichlet boundary conditions. Discrete and Continuous Dynamical Systems, 2013, 33 (11&12) : 5107-5141. doi: 10.3934/dcds.2013.33.5107 |
[7] |
Tuhin Ghosh, Karthik Iyer. Cloaking for a quasi-linear elliptic partial differential equation. Inverse Problems and Imaging, 2018, 12 (2) : 461-491. doi: 10.3934/ipi.2018020 |
[8] |
J. Húska, Peter Poláčik. Exponential separation and principal Floquet bundles for linear parabolic equations on $R^N$. Discrete and Continuous Dynamical Systems, 2008, 20 (1) : 81-113. doi: 10.3934/dcds.2008.20.81 |
[9] |
Noboru Okazawa, Kentarou Yoshii. Linear evolution equations with strongly measurable families and application to the Dirac equation. Discrete and Continuous Dynamical Systems - S, 2011, 4 (3) : 723-744. doi: 10.3934/dcdss.2011.4.723 |
[10] |
Farid Ammar Khodja, Franz Chouly, Michel Duprez. Partial null controllability of parabolic linear systems. Mathematical Control and Related Fields, 2016, 6 (2) : 185-216. doi: 10.3934/mcrf.2016001 |
[11] |
Frédéric Mazenc, Christophe Prieur. Strict Lyapunov functions for semilinear parabolic partial differential equations. Mathematical Control and Related Fields, 2011, 1 (2) : 231-250. doi: 10.3934/mcrf.2011.1.231 |
[12] |
Eugenia N. Petropoulou, Panayiotis D. Siafarikas. Polynomial solutions of linear partial differential equations. Communications on Pure and Applied Analysis, 2009, 8 (3) : 1053-1065. doi: 10.3934/cpaa.2009.8.1053 |
[13] |
Janusz Mierczyński, Wenxian Shen. Time averaging for nonautonomous/random linear parabolic equations. Discrete and Continuous Dynamical Systems - B, 2008, 9 (3&4, May) : 661-699. doi: 10.3934/dcdsb.2008.9.661 |
[14] |
Fang Chen, Ning Gao, Yao- Lin Jiang. On product-type generalized block AOR method for augmented linear systems. Numerical Algebra, Control and Optimization, 2012, 2 (4) : 797-809. doi: 10.3934/naco.2012.2.797 |
[15] |
Juan A. Calzada, Rafael Obaya, Ana M. Sanz. Continuous separation for monotone skew-product semiflows: From theoretical to numerical results. Discrete and Continuous Dynamical Systems - B, 2015, 20 (3) : 915-944. doi: 10.3934/dcdsb.2015.20.915 |
[16] |
Doan Thai Son. On analyticity for Lyapunov exponents of generic bounded linear random dynamical systems. Discrete and Continuous Dynamical Systems - B, 2017, 22 (8) : 3113-3126. doi: 10.3934/dcdsb.2017166 |
[17] |
Nguyen Dinh Cong, Doan Thai Son. On integral separation of bounded linear random differential equations. Discrete and Continuous Dynamical Systems - S, 2016, 9 (4) : 995-1007. doi: 10.3934/dcdss.2016038 |
[18] |
Pedro Duarte, Silvius Klein, Manuel Santos. A random cocycle with non Hölder Lyapunov exponent. Discrete and Continuous Dynamical Systems, 2019, 39 (8) : 4841-4861. doi: 10.3934/dcds.2019197 |
[19] |
Robert Baier, Lars Grüne, Sigurđur Freyr Hafstein. Linear programming based Lyapunov function computation for differential inclusions. Discrete and Continuous Dynamical Systems - B, 2012, 17 (1) : 33-56. doi: 10.3934/dcdsb.2012.17.33 |
[20] |
Ting Guo, Xianhua Tang, Qi Zhang, Zu Gao. Nontrivial solutions for the choquard equation with indefinite linear part and upper critical exponent. Communications on Pure and Applied Analysis, 2020, 19 (3) : 1563-1579. doi: 10.3934/cpaa.2020078 |
2020 Impact Factor: 2.425
Tools
Metrics
Other articles
by authors
[Back to Top]