Citation: |
[1] |
B. Aulbach and B. M. Garay, Partial linearization for noninvertible mappings, Z. Angew. Math. Phys., 45 (1994), 505-542.doi: 10.1007/BF00991895. |
[2] |
B. Aulbach and T. Wanner, The Hartman-Grobman theorem for Carathéodory-type differential equations in Banach spaces, Nonlin. Analysis (TMA), 40 (2000), 91-104.doi: 10.1016/S0362-546X(00)85006-3. |
[3] |
P. Bates and K. Lu, A Hartman-Grobman theorem for the Cahn-Hilliard and phase-field equations, J. Dyn. Differ. Equations, 6 (1994), 101-145.doi: 10.1007/BF02219190. |
[4] |
A. Carvalho, J. Langa and J. Robinson, Attractors for Infinite-Dimensional Non-Autonomous Dynamical Systems, Applied Mathematical Sciences, 182. Springer, New York, 2013.doi: 10.1007/978-1-4614-4581-4. |
[5] |
C. Chicone and Y. Latushkin, Center manifolds for infinite dimensional nonautonomous differential equations, J. Differ. Equations, 141 (1997), 356-399.doi: 10.1006/jdeq.1997.3343. |
[6] |
S.-N. Chow, X.-B. Lin and K. Lu, Smooth invariant foliations in infinite dimensional spaces, J. Differ. Equations, 94 (1991), 266-291.doi: 10.1016/0022-0396(91)90093-O. |
[7] |
S.-N. Chow and H. Leiva, Dynamical spectrum for skew product flows in Banach spaces, In J. Henderson (ed.), Boundary value problems for functional differential equations, 85-105. World Scientific, Singapore etc., 1995. |
[8] |
G. Farkas, A Hartman-Grobman result for retarded functional differential equations with an application to the numerics around hyperbolic equilibria, Z. Angew. Math. Phys., 52 (2001), 421-432.doi: 10.1007/PL00001554. |
[9] |
D. Grobman, Homeomorphism of systems of differential equations, Doklady Akademii Nauk SSSR, 128 (1959), 880-881. |
[10] |
P. Hartman, A lemma in the theory of structural stability of differential equations, Proc. Am. Math. Soc., 11 (1960), 610-620.doi: 10.1090/S0002-9939-1960-0121542-7. |
[11] |
J. Li, K. Lu and P. Bates, Invariant foliations for random dynamical systems, Discrete and Continuous Dynamical Systems, 34 (2014), 3639-3666.doi: 10.3934/dcds.2014.34.3639. |
[12] |
K. Lu, A Hartman-Grobman theorem for scalar reaction-diffusion equations, J. Differ. Equations, 93 (1991), 364-394.doi: 10.1016/0022-0396(91)90017-4. |
[13] |
X. Mora and J. Solà-Morales, Existence and nonexistence of finite-dimensional globally attracting invariant manifolds in semilinear damped wave equation, In S.-N. Chow and J.K. Hale (eds.), Dynamics of Infinite Dimensional Systems, Springer, New York etc., 37 (1987), 187-210. |
[14] |
N. Van Minh, F. Räbiger and R. Schnaubelt, Exponential stability, exponential expansiveness, and exponential dichotomy of evolution equations on the half-line, Integral Equations Oper. Theory, 32 (1998), 332-353.doi: 10.1007/BF01203774. |
[15] |
K. J. Palmer, A generalization of Hartman's linearization theorem, J. Math. Anal. Appl., 41 (1973), 753-758.doi: 10.1016/0022-247X(73)90245-X. |
[16] |
C. Pötzsche, Topological decoupling, linearization and perturbation on inhomogeneous time scales, J. Differ. Equations, 245 (2008), 1210-1242.doi: 10.1016/j.jde.2008.06.011. |
[17] |
C. Pötzsche, Geometric Theory of Discrete Nonautonomous Dynamical Systems, Lect. Notes Math. 2002, Springer, Berlin etc., 2010.doi: 10.1007/978-3-642-14258-1. |
[18] |
C. Pötzsche and E. Russ, Notes on spectrum and exponential decay in nonautonomous evolutionary equations, Electron. J. Qual. Theory Differ. Equ., accepted, 2015. |
[19] |
E. Russ, On the Dichotomy Spectrum in Infinite Dimensions, PhD thesis, Alpen-Adria Universität Klagenfurt, 2015. |
[20] |
A. Reinfelds, Partial decoupling for noninvertible mappings, Differential Equations and Dynamical Systems, 2 (1994), 205-215. |
[21] |
A. Reinfelds, The reduction principle for discrete dynamical and semidynamical systems in metric spaces, Z. Angew. Math. Phys., 45 (1994), 933-955.doi: 10.1007/BF00952086. |
[22] |
R. Sacker and G. Sell, A spectral theory for linear differential systems, J. Differ. Equations, 27 (1978), 320-358.doi: 10.1016/0022-0396(78)90057-8. |
[23] |
G. Sell and Y. You, Dynamics of Evolutionary Equations, Applied Mathematical Sciences, 143. Springer, Berlin etc., 2002.doi: 10.1007/978-1-4757-5037-9. |
[24] |
S. Siegmund, Spektraltheorie, Glatte Faserungen und Normalformen Für Differentialgleichungen vom Carathéodory-Typ, Dissertation, Universität Augsburg, Germany, 1999. |
[25] |
A. N. Šošitaĭšvili, Bifurcations of topological type at singular points of parametrized vector fields, Functional Analysis and its Applications, 5 (1972), 169-170. |
[26] |
N. Sternberg, A Hartman-Grobman theorem for a class of retarded functional differential equations, J. Math. Anal. Appl., 176 (1993), 156-165.doi: 10.1006/jmaa.1993.1206. |
[27] |
E. M. Wright, A nonlinear difference-differential equation, J. Reine Angew. Math. 194 (1955), 66-87. |