Citation: |
[1] |
M. Aouadi, Stability aspects in a nonsimple thermoelastic diffusion problem, Appl. Anal., 92 (2013), 1816-1828.doi: 10.1080/00036811.2012.702341. |
[2] |
M. Aouadi, On uniform decay of a nonsimple thermoelastic bar with memory, J. Math. Anal. Appl., 402 (2013), 745-757.doi: 10.1016/j.jmaa.2013.01.059. |
[3] |
M. Ciarletta and D. Ieşan, Non-classical Elastic Solids, Pitman Research Notes in Mathematical Series, vol. 293, John Wiley & Sons, Inc., New York, 1993. |
[4] |
H. D. Fernàndez Sare, J. E. Munoz Rivera and R. Quintanilla, Decay of solutions in nonsimple thermoelastic bars, Int. J. Eng. Sci., 48 (2010), 1233-1241.doi: 10.1016/j.ijengsci.2010.04.014. |
[5] |
J. A. Gawinecki and J. Lazuka, Global solution on Cauchy problem in nonlinear non-simple thermoelastic materials, Proc. Appl. Math. Mech., 6 (2006), 371-372.doi: 10.1002/pamm.200610167. |
[6] |
M. Grasselli and M. Squassina, Exponential stability and singular limit for a linear thermoelastic plate with memory effects, Adv. Math. Sci. Appl., 16 (2006), 15-31. |
[7] |
A. E. Green and R. S. Rivlin, Multipolar continuum mechanics, Arch. Ration. Mech. Anal., 17 (1964), 113-147. |
[8] |
B. Z. Guo, Further result on a one-dimensional linear thermoelastic equation with Dirichlet-Dirichlet boundary condition, Aust. N. Z. Ind. Appl. Math., 43 (2002), 449-462. |
[9] |
B. Z. Guo and J. C. Chen, The first real eigenvalue of a one-dimensional linear thermoelastic system, J. Comput. Math. Appl., 38 (1999), 249-256.doi: 10.1016/S0898-1221(99)00303-X. |
[10] |
B. Z. Guo and S. P. Yung, Asymptotic behavior of the eigenfrequency of a one-dimensional linear thermoelastic system, J. Math. Anal. Appl., 213 (1997), 406-421.doi: 10.1006/jmaa.1997.5544. |
[11] |
B. Z. Guo and G. Q. Xu, Expansion of solution in terms of generalized eigenfunctions for a hyperbolic system with static boundary condition, J. Funct. Anal., 231 (2006), 245-268.doi: 10.1016/j.jfa.2005.02.006. |
[12] |
S. W. Hansen, Exponential energy decay in a linear thermoelastic rod, J. Math. Anal. Appl., 167 (1992), 429-442.doi: 10.1016/0022-247X(92)90217-2. |
[13] |
S. W. Hansen and B.-Y. Zhang, Boundary control of a linear thermoelastic beam, J. Math. Anal. Appl., 210 (1997), 182-205.doi: 10.1006/jmaa.1997.5437. |
[14] |
D. B. Henry, A. Perssinitto and O. Lopes, On the essential spectrum of a semigroup of thermoelasticity, Nonlinear Anal. TMA, 21 (1993), 65-75.doi: 10.1016/0362-546X(93)90178-U. |
[15] |
D. Ieşan, Thermoelastic Models of Continua, Kluwer Academic Publishers, Dordrecht, 2004.doi: 10.1007/978-1-4020-2310-1. |
[16] |
H. Kolakowski and J. Lazuka, The Cauchy problem for the system of partial differential equations describing nonsimple thermoelasticity, Appl. Math., 35 (2008), 97-105.doi: 10.4064/am35-1-6. |
[17] |
H. Leiva, A necessary and sufficient algebraic condition for the controllability of a thermoelastic plate equation, IMA J. Math. Control and Information, 20 (2003), 393-410.doi: 10.1093/imamci/20.4.393. |
[18] |
Z. Y. Liu and S. M. Zheng, Exponential stability of semigroup associated with thermoelastic system, Quart. Appl. Math., 51 (1993), 535-545. |
[19] |
Z. Y. Liu and S. M. Zheng, Uniform exponential stability and approximation in control of a thermoelastic system, SIAM J. Control & Optim., 32 (1994), 1226-1246.doi: 10.1137/S0363012991219006. |
[20] |
Yu. I. Lyubich and V. Q. Phóong, Asymptotic stability of linear differential equations in Banach spaces, Studia Math., 88 (1988), 37-42. |
[21] |
V. Pata and R. Quintanilla, On the decay of solutions in nonsimple elastic solids with memory, J. Math. Anal. Appl., 363 (2010), 19-28.doi: 10.1016/j.jmaa.2009.07.055. |
[22] |
A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Applied Mathematical Sciences 44, Springer-Verlag, New York, 1983.doi: 10.1007/978-1-4612-5561-1. |
[23] |
R. Quintanilla, Thermoelasticity without energy dissipation of nonsimple materials, Z. Angew. Math. Mech., 83 (2003), 172-180.doi: 10.1002/zamm.200310017. |
[24] |
Y. G. Wang and L. Yang, $L^p-L^q$ decay estimates for Cauchy problems of linear thermoelastic systems with second sound in three dimensions, Proc. Royal Soc. Edinb., Section A Mathematics, 136 (2006), 189-207.doi: 10.1017/S0308210500004510. |
[25] |
R. M. Young, An Introduction to Nonharmonic Fourier Series, Academic Press, New York, 1980. |