\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Coupling the shallow water equation with a long term dynamics of sand dunes

Abstract Related Papers Cited by
  • In this paper we couple a long term dynamic equation of dunes of sand(LTDD) in [6] with a shallow water equation(SWE). And we study the evolution of sand dunes over long periods in the marine environment near the coast. We use works due to S. Klainerman & A. Majda [9] to show on the one hand existence and uniqueness results. On the other hand we give estimations of solutions for the dimensionless coupled system SWE-LTDD. And finally the coupled system is homogenized.
    Mathematics Subject Classification: 35L45, 58J45, 35K15, 58J35, 58J37.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    G. Allaire, Homogenization and Two-Scale convergence, SIAM J. Math. Anal., 23 (1992), 1482-1518.doi: 10.1137/0523084.

    [2]

    P. Alliot, E. Frénod and V. Monbet, Modelling the coastal ocean over a time period of several weeks, Journal of Differential Equations, 248 (2010), 639-659.doi: 10.1016/j.jde.2009.11.004.

    [3]

    E. Audusse, F. Benkhadloun, J. Sainte-Marie and M. Seaid, Multilayer Saint-Venant equations over movable beds, Discrete and Continuous Dynamical Systems - B, 15 (2011), 917-934.doi: 10.3934/dcdsb.2011.15.917.

    [4]

    C. Berthon, S. Cordier, O. Delestre and M. H. Le, An analytical solution of shallow water system coupled to Exner equation, Comptes Rendus Mathématique, Elsevier, 350 (2012), 183-186.doi: 10.1016/j.crma.2012.01.007.

    [5]

    S. Cordier, C. Lucas and J. D. D. Zabsonré, A two time-scale model for tidal bed-load transport, Communications in Mathematical Sciences, 10 (2012), 875-888.doi: 10.4310/CMS.2012.v10.n3.a8.

    [6]

    I. Faye, E. Frénod and D. Seck, Long term behavior of singularity perturbed parabolic degenerated equation, To appear in journal of non linear analysis and application.

    [7]

    D. Idier, D. Astruc and S. J. M. H. Hulcher, Influence of bed roughness on dune and megaripple generation, Geophysical Research Letters, 31 (2004), 1-5.doi: 10.1029/2004GL019969.

    [8]

    T. Kato, The Cauchy problem for quasi-linear symmetric system, Arch. Ration. Mech. Anal., 58 (1975), 181-205.doi: 10.1007/BF00280740.

    [9]

    S. Klainerman and A. Majda, Singular limits of quasilinear hyperbolic systems with large parameters and the incompressible limit of compressible fluids, Commun. Appl. Math., 34 (1981), 481-524.doi: 10.1002/cpa.3160340405.

    [10]

    O. A. Ladyzenskaja, V. A. Solonnikov and N. N. Ural'ceva, Linear and Quasi-linear Equations of Parabolic Type, AMS Translation of Mathematical Monographs, 1968.

    [11]

    J. L. Lions, Remarques sur les équations différentielles ordinaires, Osaka Math. J., 15 (1963), 131-142.

    [12]

    G. Nguetseng, A general convergence result for a functional related to the theory of homogenization, SIAM J. Math. Anal., 20 (1989), 608-623.doi: 10.1137/0520043.

    [13]

    L. C. Van Rijn, Handbook on Sediment Transport by Current and Waves, Tech. Report H461:12.1-12.27, Delft Hydraulics, 1989.

    [14]

    J. de D. Zabsonré, C. Lucas and E. Fernandez-Nieto, An energetically consistent viscous sedimentation model, Math. Model. Meth. Appl. Sci., 19 (2009), 477-499.doi: 10.1142/S0218202509003504.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(165) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return