October  2016, 9(5): 1521-1551. doi: 10.3934/dcdss.2016061

Coupling the shallow water equation with a long term dynamics of sand dunes

1. 

Université Cheikh Anta Diop de Dakar, BP 16889 Dakar Fann , Ecole Doctorale de Mathématiques et Informatique, Laboratoire de Mathématiques de la Décision et d'Analyse Numérique, (L.M.D.A.N) F.A.S.E.G, Senegal

Received  February 2015 Revised  April 2016 Published  October 2016

In this paper we couple a long term dynamic equation of dunes of sand(LTDD) in [6] with a shallow water equation(SWE). And we study the evolution of sand dunes over long periods in the marine environment near the coast. We use works due to S. Klainerman & A. Majda [9] to show on the one hand existence and uniqueness results. On the other hand we give estimations of solutions for the dimensionless coupled system SWE-LTDD. And finally the coupled system is homogenized.
Citation: Mouhamadou Aliou M. T. Baldé, Diaraf Seck. Coupling the shallow water equation with a long term dynamics of sand dunes. Discrete and Continuous Dynamical Systems - S, 2016, 9 (5) : 1521-1551. doi: 10.3934/dcdss.2016061
References:
[1]

G. Allaire, Homogenization and Two-Scale convergence, SIAM J. Math. Anal., 23 (1992), 1482-1518. doi: 10.1137/0523084.

[2]

P. Alliot, E. Frénod and V. Monbet, Modelling the coastal ocean over a time period of several weeks, Journal of Differential Equations, 248 (2010), 639-659. doi: 10.1016/j.jde.2009.11.004.

[3]

E. Audusse, F. Benkhadloun, J. Sainte-Marie and M. Seaid, Multilayer Saint-Venant equations over movable beds, Discrete and Continuous Dynamical Systems - B, 15 (2011), 917-934. doi: 10.3934/dcdsb.2011.15.917.

[4]

C. Berthon, S. Cordier, O. Delestre and M. H. Le, An analytical solution of shallow water system coupled to Exner equation, Comptes Rendus Mathématique, Elsevier, 350 (2012), 183-186. doi: 10.1016/j.crma.2012.01.007.

[5]

S. Cordier, C. Lucas and J. D. D. Zabsonré, A two time-scale model for tidal bed-load transport, Communications in Mathematical Sciences, 10 (2012), 875-888. doi: 10.4310/CMS.2012.v10.n3.a8.

[6]

I. Faye, E. Frénod and D. Seck, Long term behavior of singularity perturbed parabolic degenerated equation,, To appear in journal of non linear analysis and application., (). 

[7]

D. Idier, D. Astruc and S. J. M. H. Hulcher, Influence of bed roughness on dune and megaripple generation, Geophysical Research Letters, 31 (2004), 1-5. doi: 10.1029/2004GL019969.

[8]

T. Kato, The Cauchy problem for quasi-linear symmetric system, Arch. Ration. Mech. Anal., 58 (1975), 181-205. doi: 10.1007/BF00280740.

[9]

S. Klainerman and A. Majda, Singular limits of quasilinear hyperbolic systems with large parameters and the incompressible limit of compressible fluids, Commun. Appl. Math., 34 (1981), 481-524. doi: 10.1002/cpa.3160340405.

[10]

O. A. Ladyzenskaja, V. A. Solonnikov and N. N. Ural'ceva, Linear and Quasi-linear Equations of Parabolic Type, AMS Translation of Mathematical Monographs, 1968.

[11]

J. L. Lions, Remarques sur les équations différentielles ordinaires, Osaka Math. J., 15 (1963), 131-142.

[12]

G. Nguetseng, A general convergence result for a functional related to the theory of homogenization, SIAM J. Math. Anal., 20 (1989), 608-623. doi: 10.1137/0520043.

[13]

L. C. Van Rijn, Handbook on Sediment Transport by Current and Waves, Tech. Report H461:12.1-12.27, Delft Hydraulics, 1989.

[14]

J. de D. Zabsonré, C. Lucas and E. Fernandez-Nieto, An energetically consistent viscous sedimentation model, Math. Model. Meth. Appl. Sci., 19 (2009), 477-499. doi: 10.1142/S0218202509003504.

show all references

References:
[1]

G. Allaire, Homogenization and Two-Scale convergence, SIAM J. Math. Anal., 23 (1992), 1482-1518. doi: 10.1137/0523084.

[2]

P. Alliot, E. Frénod and V. Monbet, Modelling the coastal ocean over a time period of several weeks, Journal of Differential Equations, 248 (2010), 639-659. doi: 10.1016/j.jde.2009.11.004.

[3]

E. Audusse, F. Benkhadloun, J. Sainte-Marie and M. Seaid, Multilayer Saint-Venant equations over movable beds, Discrete and Continuous Dynamical Systems - B, 15 (2011), 917-934. doi: 10.3934/dcdsb.2011.15.917.

[4]

C. Berthon, S. Cordier, O. Delestre and M. H. Le, An analytical solution of shallow water system coupled to Exner equation, Comptes Rendus Mathématique, Elsevier, 350 (2012), 183-186. doi: 10.1016/j.crma.2012.01.007.

[5]

S. Cordier, C. Lucas and J. D. D. Zabsonré, A two time-scale model for tidal bed-load transport, Communications in Mathematical Sciences, 10 (2012), 875-888. doi: 10.4310/CMS.2012.v10.n3.a8.

[6]

I. Faye, E. Frénod and D. Seck, Long term behavior of singularity perturbed parabolic degenerated equation,, To appear in journal of non linear analysis and application., (). 

[7]

D. Idier, D. Astruc and S. J. M. H. Hulcher, Influence of bed roughness on dune and megaripple generation, Geophysical Research Letters, 31 (2004), 1-5. doi: 10.1029/2004GL019969.

[8]

T. Kato, The Cauchy problem for quasi-linear symmetric system, Arch. Ration. Mech. Anal., 58 (1975), 181-205. doi: 10.1007/BF00280740.

[9]

S. Klainerman and A. Majda, Singular limits of quasilinear hyperbolic systems with large parameters and the incompressible limit of compressible fluids, Commun. Appl. Math., 34 (1981), 481-524. doi: 10.1002/cpa.3160340405.

[10]

O. A. Ladyzenskaja, V. A. Solonnikov and N. N. Ural'ceva, Linear and Quasi-linear Equations of Parabolic Type, AMS Translation of Mathematical Monographs, 1968.

[11]

J. L. Lions, Remarques sur les équations différentielles ordinaires, Osaka Math. J., 15 (1963), 131-142.

[12]

G. Nguetseng, A general convergence result for a functional related to the theory of homogenization, SIAM J. Math. Anal., 20 (1989), 608-623. doi: 10.1137/0520043.

[13]

L. C. Van Rijn, Handbook on Sediment Transport by Current and Waves, Tech. Report H461:12.1-12.27, Delft Hydraulics, 1989.

[14]

J. de D. Zabsonré, C. Lucas and E. Fernandez-Nieto, An energetically consistent viscous sedimentation model, Math. Model. Meth. Appl. Sci., 19 (2009), 477-499. doi: 10.1142/S0218202509003504.

[1]

Robert McOwen, Peter Topalov. Asymptotics in shallow water waves. Discrete and Continuous Dynamical Systems, 2015, 35 (7) : 3103-3131. doi: 10.3934/dcds.2015.35.3103

[2]

Y. Efendiev, B. Popov. On homogenization of nonlinear hyperbolic equations. Communications on Pure and Applied Analysis, 2005, 4 (2) : 295-309. doi: 10.3934/cpaa.2005.4.295

[3]

Madalina Petcu, Roger Temam. The one dimensional shallow water equations with Dirichlet boundary conditions on the velocity. Discrete and Continuous Dynamical Systems - S, 2011, 4 (1) : 209-222. doi: 10.3934/dcdss.2011.4.209

[4]

Zhigang Wang. Vanishing viscosity limit of the rotating shallow water equations with far field vacuum. Discrete and Continuous Dynamical Systems, 2018, 38 (1) : 311-328. doi: 10.3934/dcds.2018015

[5]

Chengchun Hao. Cauchy problem for viscous shallow water equations with surface tension. Discrete and Continuous Dynamical Systems - B, 2010, 13 (3) : 593-608. doi: 10.3934/dcdsb.2010.13.593

[6]

Denys Dutykh, Dimitrios Mitsotakis. On the relevance of the dam break problem in the context of nonlinear shallow water equations. Discrete and Continuous Dynamical Systems - B, 2010, 13 (4) : 799-818. doi: 10.3934/dcdsb.2010.13.799

[7]

Werner Bauer, François Gay-Balmaz. Towards a geometric variational discretization of compressible fluids: The rotating shallow water equations. Journal of Computational Dynamics, 2019, 6 (1) : 1-37. doi: 10.3934/jcd.2019001

[8]

Daniel Guo, John Drake. A global semi-Lagrangian spectral model for the reformulated shallow water equations. Conference Publications, 2003, 2003 (Special) : 375-385. doi: 10.3934/proc.2003.2003.375

[9]

Xiaoping Zhai, Hailong Ye. On global large energy solutions to the viscous shallow water equations. Discrete and Continuous Dynamical Systems - B, 2020, 25 (11) : 4277-4293. doi: 10.3934/dcdsb.2020097

[10]

Madalina Petcu, Roger Temam. An interface problem: The two-layer shallow water equations. Discrete and Continuous Dynamical Systems, 2013, 33 (11&12) : 5327-5345. doi: 10.3934/dcds.2013.33.5327

[11]

David F. Parker. Higher-order shallow water equations and the Camassa-Holm equation. Discrete and Continuous Dynamical Systems - B, 2007, 7 (3) : 629-641. doi: 10.3934/dcdsb.2007.7.629

[12]

Justin Cyr, Phuong Nguyen, Roger Temam. Stochastic one layer shallow water equations with Lévy noise. Discrete and Continuous Dynamical Systems - B, 2019, 24 (8) : 3765-3818. doi: 10.3934/dcdsb.2018331

[13]

Gilbert Peralta, Karl Kunisch. Interface stabilization of a parabolic-hyperbolic pde system with delay in the interaction. Discrete and Continuous Dynamical Systems, 2018, 38 (6) : 3055-3083. doi: 10.3934/dcds.2018133

[14]

Marina Ghisi, Massimo Gobbino. Hyperbolic--parabolic singular perturbation for mildly degenerate Kirchhoff equations: Global-in-time error estimates. Communications on Pure and Applied Analysis, 2009, 8 (4) : 1313-1332. doi: 10.3934/cpaa.2009.8.1313

[15]

Aníbal Rodríguez-Bernal, Robert Willie. Singular large diffusivity and spatial homogenization in a non homogeneous linear parabolic problem. Discrete and Continuous Dynamical Systems - B, 2005, 5 (2) : 385-410. doi: 10.3934/dcdsb.2005.5.385

[16]

Daniel Guo, John Drake. A global semi-Lagrangian spectral model of shallow water equations with time-dependent variable resolution. Conference Publications, 2005, 2005 (Special) : 355-364. doi: 10.3934/proc.2005.2005.355

[17]

Andreas Hiltebrand, Siddhartha Mishra. Entropy stability and well-balancedness of space-time DG for the shallow water equations with bottom topography. Networks and Heterogeneous Media, 2016, 11 (1) : 145-162. doi: 10.3934/nhm.2016.11.145

[18]

Aimin Huang, Roger Temam. The nonlinear 2D subcritical inviscid shallow water equations with periodicity in one direction. Communications on Pure and Applied Analysis, 2014, 13 (5) : 2005-2038. doi: 10.3934/cpaa.2014.13.2005

[19]

François Bouchut, Vladimir Zeitlin. A robust well-balanced scheme for multi-layer shallow water equations. Discrete and Continuous Dynamical Systems - B, 2010, 13 (4) : 739-758. doi: 10.3934/dcdsb.2010.13.739

[20]

Md. Masum Murshed, Kouta Futai, Masato Kimura, Hirofumi Notsu. Theoretical and numerical studies for energy estimates of the shallow water equations with a transmission boundary condition. Discrete and Continuous Dynamical Systems - S, 2021, 14 (3) : 1063-1078. doi: 10.3934/dcdss.2020230

2020 Impact Factor: 2.425

Metrics

  • PDF downloads (149)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]