October  2016, 9(5): 1565-1574. doi: 10.3934/dcdss.2016063

About interface conditions for coupling hydrostatic and nonhydrostatic Navier-Stokes flows

1. 

Univ. Grenoble Alpes, LJK, BP 53, 38041 Grenoble cedex 9, France

2. 

Inria and Institut Montpelliérain Alexander Grothendieck, Team LEM0N, Bat 5 - CC05 017, 860 rue Saint-Priest, 34095 Montpellier Cedex 5, France

Received  June 2015 Revised  August 2015 Published  October 2016

In this work we are interested in the search of interface conditions to couple hydrostatic and nonhydrostatic ocean models. To this aim, we consider simplified systems and use a time discretization to handle linear equations. We recall the links between the two models (with the particular role of the aspect ratio $\delta=H/L\ll 1$) and introduce an iterative method based on the Schwarz algorithm (widely used in domain decomposition methods).
    The convergence of this method depends strongly on the choice of interface conditions: this is why we look for exact absorbing conditions and their approximations in order to provide tractable and efficient coupling algorithms.
Citation: Eric Blayo, Antoine Rousseau. About interface conditions for coupling hydrostatic and nonhydrostatic Navier-Stokes flows. Discrete and Continuous Dynamical Systems - S, 2016, 9 (5) : 1565-1574. doi: 10.3934/dcdss.2016063
References:
[1]

E. Audusse, P. Dreyfuss and B. Merlet, Schwarz waveform relaxation for primitive equations of the ocean, SIAM J. Sci. Comput., 32 (2010), 2908-2936. doi: 10.1137/090770059.

[2]

P. Azerad and F. Guillen, Mathematical justification of the hydrostatic approximation in the primitive equations of geophysical fluids dynamics, SIAM J. Math. Anal., 33 (2001), 847-859. doi: 10.1137/S0036141000375962.

[3]

E. Blayo, D. Cherel and A. Rousseau, Towards optimized Schwarz methods for the Navier-Stokes equations, J. Sci. Comput., 66 (2016), 275-295. doi: 10.1007/s10915-015-0020-9.

[4]

C. Cao and E. S. Titi, Global well-posedness of the three-dimensional viscous primitive equations of large scale ocean and atmosphere dynamics, Ann. of Math., 166 (2007), 245-267. doi: 10.4007/annals.2007.166.245.

[5]

B. Engquist and A. Majda, Absorbing boundary conditions for the numerical simulation of waves, Math. Comput., 31 (1977), 629-651. doi: 10.1090/S0025-5718-1977-0436612-4.

[6]

O. B. Fringer, M. Gerritsen and R. Street, An unstructured-grid, finite-volume, nonhydrostatic, parallel coastal-ocean simulator, Ocean Modell., 14 (2006), 139-173. doi: 10.1016/j.ocemod.2006.03.006.

[7]

O. B. Fringer, J. C. McWilliams and R. L. Street, A new hybrid model for coastal simulations, Oceanography, 19 (2006), 46-59. doi: 10.5670/oceanog.2006.91.

[8]

P. C. Gallacher, D. A. Hebert and M. R. Schaferkotter, Nesting a nonhydrostatic model in a hydrostatic model: The boundary interface, Ocean Modell., 40 (2011), 190-198. doi: 10.1016/j.ocemod.2011.08.006.

[9]

M. J. Gander, Schwarz methods over the course of time, Elec. Trans. Num. Anal., 31 (2008), 228-255.

[10]

G. Kobelkov, Existence of a solution 'in the large' for the 3D large-scale ocean dynamics equations, C. R. Math. Acad. Sci. Paris, 343 (2006), 283-286. doi: 10.1016/j.crma.2006.04.020.

[11]

J.-L. Lions, R. Temam and S. Wang, On the equations of the large-scale ocean, Nonlinearity, 5 (1992), 1007-1053. doi: 10.1088/0951-7715/5/5/002.

[12]

C. Lucas and A. Rousseau, New developments and cosine effect in the viscous shallow water and quasi-geostrophic equations, Multiscale Model. Simul., 7 (2008), 796-813. doi: 10.1137/070705453.

[13]

J. Marshall, A. Adcroft, C. Hill, L. Perelman and C. Heisey, A finite-volume, incompressible Navier Stokes model for studies of the ocean on parallel computers, J. Geophys. Res. Ocean., 102 (1997), 5753-5766. doi: 10.1029/96JC02775.

[14]

J. Marshall, C. Hill, L. Perelman and A. Adcroft, Hydrostatic, quasi-hydrostatic, and nonhydrostatic ocean modeling, J. Geophys. Res. Ocean., 102 (1997), 5733-5752. doi: 10.1029/96JC02776.

[15]

F. Nataf and F. Rogier, Factorization of the convection-diffusion operator and the Schwarz algorithm, Math. Models and Methods in Applied Sciences, 5 (1995), 67-93. doi: 10.1142/S021820259500005X.

[16]

F. Nataf, F. Rogier and E. de Sturler, Domain decomposition methods for fluid dynamics, in Navier-Stokes Equations and Related Nonlinear Problems (ed. A. Sequeira), Springer US, (1995), 367-376.

[17]

M. F. Peeters, W. G. Habashi and E. G. Dueck, Finite element streamfunction - vorticity solutions of the incompressible Navier-Stokes equations, Int. J. Num. Methods in Fluids, 7 (2008), 17-27.

[18]

M. Petcu, R. Temam and M. Ziane, Some mathematical problems in fluid dynamics, in Handbook of Numerical Analysis (eds. P.G. Ciarlet), Elsevier, 14 (2009), 577-750. doi: 10.1016/S1570-8659(08)00212-3.

[19]

A. Rousseau, R. Temam and J. Tribbia, Boundary value problems for the inviscid primitive equations in limited domain, in Handbook of Numerical Analysis, (eds. P.G. Ciarlet), Elsevier, 14 (2008), 481-575. doi: 10.1016/S1570-8659(08)00211-1.

show all references

References:
[1]

E. Audusse, P. Dreyfuss and B. Merlet, Schwarz waveform relaxation for primitive equations of the ocean, SIAM J. Sci. Comput., 32 (2010), 2908-2936. doi: 10.1137/090770059.

[2]

P. Azerad and F. Guillen, Mathematical justification of the hydrostatic approximation in the primitive equations of geophysical fluids dynamics, SIAM J. Math. Anal., 33 (2001), 847-859. doi: 10.1137/S0036141000375962.

[3]

E. Blayo, D. Cherel and A. Rousseau, Towards optimized Schwarz methods for the Navier-Stokes equations, J. Sci. Comput., 66 (2016), 275-295. doi: 10.1007/s10915-015-0020-9.

[4]

C. Cao and E. S. Titi, Global well-posedness of the three-dimensional viscous primitive equations of large scale ocean and atmosphere dynamics, Ann. of Math., 166 (2007), 245-267. doi: 10.4007/annals.2007.166.245.

[5]

B. Engquist and A. Majda, Absorbing boundary conditions for the numerical simulation of waves, Math. Comput., 31 (1977), 629-651. doi: 10.1090/S0025-5718-1977-0436612-4.

[6]

O. B. Fringer, M. Gerritsen and R. Street, An unstructured-grid, finite-volume, nonhydrostatic, parallel coastal-ocean simulator, Ocean Modell., 14 (2006), 139-173. doi: 10.1016/j.ocemod.2006.03.006.

[7]

O. B. Fringer, J. C. McWilliams and R. L. Street, A new hybrid model for coastal simulations, Oceanography, 19 (2006), 46-59. doi: 10.5670/oceanog.2006.91.

[8]

P. C. Gallacher, D. A. Hebert and M. R. Schaferkotter, Nesting a nonhydrostatic model in a hydrostatic model: The boundary interface, Ocean Modell., 40 (2011), 190-198. doi: 10.1016/j.ocemod.2011.08.006.

[9]

M. J. Gander, Schwarz methods over the course of time, Elec. Trans. Num. Anal., 31 (2008), 228-255.

[10]

G. Kobelkov, Existence of a solution 'in the large' for the 3D large-scale ocean dynamics equations, C. R. Math. Acad. Sci. Paris, 343 (2006), 283-286. doi: 10.1016/j.crma.2006.04.020.

[11]

J.-L. Lions, R. Temam and S. Wang, On the equations of the large-scale ocean, Nonlinearity, 5 (1992), 1007-1053. doi: 10.1088/0951-7715/5/5/002.

[12]

C. Lucas and A. Rousseau, New developments and cosine effect in the viscous shallow water and quasi-geostrophic equations, Multiscale Model. Simul., 7 (2008), 796-813. doi: 10.1137/070705453.

[13]

J. Marshall, A. Adcroft, C. Hill, L. Perelman and C. Heisey, A finite-volume, incompressible Navier Stokes model for studies of the ocean on parallel computers, J. Geophys. Res. Ocean., 102 (1997), 5753-5766. doi: 10.1029/96JC02775.

[14]

J. Marshall, C. Hill, L. Perelman and A. Adcroft, Hydrostatic, quasi-hydrostatic, and nonhydrostatic ocean modeling, J. Geophys. Res. Ocean., 102 (1997), 5733-5752. doi: 10.1029/96JC02776.

[15]

F. Nataf and F. Rogier, Factorization of the convection-diffusion operator and the Schwarz algorithm, Math. Models and Methods in Applied Sciences, 5 (1995), 67-93. doi: 10.1142/S021820259500005X.

[16]

F. Nataf, F. Rogier and E. de Sturler, Domain decomposition methods for fluid dynamics, in Navier-Stokes Equations and Related Nonlinear Problems (ed. A. Sequeira), Springer US, (1995), 367-376.

[17]

M. F. Peeters, W. G. Habashi and E. G. Dueck, Finite element streamfunction - vorticity solutions of the incompressible Navier-Stokes equations, Int. J. Num. Methods in Fluids, 7 (2008), 17-27.

[18]

M. Petcu, R. Temam and M. Ziane, Some mathematical problems in fluid dynamics, in Handbook of Numerical Analysis (eds. P.G. Ciarlet), Elsevier, 14 (2009), 577-750. doi: 10.1016/S1570-8659(08)00212-3.

[19]

A. Rousseau, R. Temam and J. Tribbia, Boundary value problems for the inviscid primitive equations in limited domain, in Handbook of Numerical Analysis, (eds. P.G. Ciarlet), Elsevier, 14 (2008), 481-575. doi: 10.1016/S1570-8659(08)00211-1.

[1]

Quanrong Li, Shijin Ding. Global well-posedness of the Navier-Stokes equations with Navier-slip boundary conditions in a strip domain. Communications on Pure and Applied Analysis, 2021, 20 (10) : 3561-3581. doi: 10.3934/cpaa.2021121

[2]

Chérif Amrouche, Nour El Houda Seloula. $L^p$-theory for the Navier-Stokes equations with pressure boundary conditions. Discrete and Continuous Dynamical Systems - S, 2013, 6 (5) : 1113-1137. doi: 10.3934/dcdss.2013.6.1113

[3]

Sylvie Monniaux. Various boundary conditions for Navier-Stokes equations in bounded Lipschitz domains. Discrete and Continuous Dynamical Systems - S, 2013, 6 (5) : 1355-1369. doi: 10.3934/dcdss.2013.6.1355

[4]

Matthew Paddick. The strong inviscid limit of the isentropic compressible Navier-Stokes equations with Navier boundary conditions. Discrete and Continuous Dynamical Systems, 2016, 36 (5) : 2673-2709. doi: 10.3934/dcds.2016.36.2673

[5]

Alessio Falocchi, Filippo Gazzola. Regularity for the 3D evolution Navier-Stokes equations under Navier boundary conditions in some Lipschitz domains. Discrete and Continuous Dynamical Systems, 2022, 42 (3) : 1185-1200. doi: 10.3934/dcds.2021151

[6]

Gung-Min Gie, Makram Hamouda, Roger Temam. Asymptotic analysis of the Navier-Stokes equations in a curved domain with a non-characteristic boundary. Networks and Heterogeneous Media, 2012, 7 (4) : 741-766. doi: 10.3934/nhm.2012.7.741

[7]

Yoshihiro Shibata. On the local wellposedness of free boundary problem for the Navier-Stokes equations in an exterior domain. Communications on Pure and Applied Analysis, 2018, 17 (4) : 1681-1721. doi: 10.3934/cpaa.2018081

[8]

Maxim A. Olshanskii, Leo G. Rebholz, Abner J. Salgado. On well-posedness of a velocity-vorticity formulation of the stationary Navier-Stokes equations with no-slip boundary conditions. Discrete and Continuous Dynamical Systems, 2018, 38 (7) : 3459-3477. doi: 10.3934/dcds.2018148

[9]

Petr Kučera. The time-periodic solutions of the Navier-Stokes equations with mixed boundary conditions. Discrete and Continuous Dynamical Systems - S, 2010, 3 (2) : 325-337. doi: 10.3934/dcdss.2010.3.325

[10]

Franck Boyer, Pierre Fabrie. Outflow boundary conditions for the incompressible non-homogeneous Navier-Stokes equations. Discrete and Continuous Dynamical Systems - B, 2007, 7 (2) : 219-250. doi: 10.3934/dcdsb.2007.7.219

[11]

Evrad M. D. Ngom, Abdou Sène, Daniel Y. Le Roux. Boundary stabilization of the Navier-Stokes equations with feedback controller via a Galerkin method. Evolution Equations and Control Theory, 2014, 3 (1) : 147-166. doi: 10.3934/eect.2014.3.147

[12]

Teng Wang, Yi Wang. Large-time behaviors of the solution to 3D compressible Navier-Stokes equations in half space with Navier boundary conditions. Communications on Pure and Applied Analysis, 2021, 20 (7&8) : 2811-2838. doi: 10.3934/cpaa.2021080

[13]

Roberta Bianchini, Roberto Natalini. Convergence of a vector-BGK approximation for the incompressible Navier-Stokes equations. Kinetic and Related Models, 2019, 12 (1) : 133-158. doi: 10.3934/krm.2019006

[14]

Michele Coti Zelati. Remarks on the approximation of the Navier-Stokes equations via the implicit Euler scheme. Communications on Pure and Applied Analysis, 2013, 12 (6) : 2829-2838. doi: 10.3934/cpaa.2013.12.2829

[15]

Yoshikazu Giga. A remark on a Liouville problem with boundary for the Stokes and the Navier-Stokes equations. Discrete and Continuous Dynamical Systems - S, 2013, 6 (5) : 1277-1289. doi: 10.3934/dcdss.2013.6.1277

[16]

Sun-Ho Choi. Weighted energy method and long wave short wave decomposition on the linearized compressible Navier-Stokes equation. Networks and Heterogeneous Media, 2013, 8 (2) : 465-479. doi: 10.3934/nhm.2013.8.465

[17]

Chongsheng Cao. Sufficient conditions for the regularity to the 3D Navier-Stokes equations. Discrete and Continuous Dynamical Systems, 2010, 26 (4) : 1141-1151. doi: 10.3934/dcds.2010.26.1141

[18]

Hi Jun Choe, Hyea Hyun Kim, Do Wan Kim, Yongsik Kim. Meshless method for the stationary incompressible Navier-Stokes equations. Discrete and Continuous Dynamical Systems - B, 2001, 1 (4) : 495-526. doi: 10.3934/dcdsb.2001.1.495

[19]

Yinnian He, R. M.M. Mattheij. Reformed post-processing Galerkin method for the Navier-Stokes equations. Discrete and Continuous Dynamical Systems - B, 2007, 8 (2) : 369-387. doi: 10.3934/dcdsb.2007.8.369

[20]

Kaitai Li, Yanren Hou. Fourier nonlinear Galerkin method for Navier-Stokes equations. Discrete and Continuous Dynamical Systems, 1996, 2 (4) : 497-524. doi: 10.3934/dcds.1996.2.497

2020 Impact Factor: 2.425

Metrics

  • PDF downloads (163)
  • HTML views (0)
  • Cited by (5)

Other articles
by authors

[Back to Top]