Citation: |
[1] | |
[2] |
H. Abidi and T. Hmidi, On the global well-posedness for Boussinesq system, J. Differential Equations, 233 (2007), 199-220.doi: 10.1016/j.jde.2006.10.008. |
[3] |
D. Bian and G. Gui, On 2-D Boussinesq equations for MHD convection with stratification effects, J. Differential Equations, 261 (2016), 1669-1711.doi: 10.1016/j.jde.2016.04.011. |
[4] |
D. Bian, G. Gui, B. Guo and Z. Xin, On the stability for the incompressible 2-D Boussinesq system for magnetohydrodynamics convection, preprint, 2015. |
[5] |
D. Bian and B. Guo, Global existence and large time behavior of solutions to the electric-magnetohydrodynamic equations, Kinetic and Related Models, 6 (2013), 481-503.doi: 10.3934/krm.2013.6.481. |
[6] |
J. R. Cannon and E. Dibenedetto, The initial value problem for the Boussinesqs with data in $L^p$. In: Approximation Methods for Navier-Stokes Problems, Lecture Notes in Mathematics Volume, vol. 771, pp. 129-144. Springer, Berlin, 1980. |
[7] |
C. Cao and J. Wu, Global regularity for the 2D MHD equations with mixed partial dissipation and magnetic diffusion, Adv. Math., 226 (2011), 1803-1822.doi: 10.1016/j.aim.2010.08.017. |
[8] |
D. Chae, Global regularity for the 2D Boussinesq equations with partial viscosity terms, Adv. Math., 203 (2006), 497-513.doi: 10.1016/j.aim.2005.05.001. |
[9] |
Q. Chen, C. Miao and Z. Zhang, The Beale-Kato-Majda criterion for the 3D magnetohydrodynamics equations, Comm. Math. Phys., 275 (2007), 861-872.doi: 10.1007/s00220-007-0319-y. |
[10] |
R. Danchin and M. Paicu, Les théorèmes de Leray et de Fujita-Kato pour le système de Boussinesq partiellement visqueux, Bull. Soc. Math. France, 136 (2008), 261-309. |
[11] |
B. Desjardins and C. Le Bris, Remarks on a nonhomogeneous model of magnetohydrodynamics, Differential Integral Equations, 11 (1998), 377-394. |
[12] |
G. Duvaut and J.-L. Lions, Inéquations en thermoélasticité et magnétohydrodynamique, Arch. Ration. Mech. Anal., 46 (1972), 241-279. |
[13] |
E. Feireisl, Dynamics of Viscous Compressible Fluids, Oxford University Press, Oxford, 2004. |
[14] |
E. Feireisl, A. Novotný and H. Petzeltová, On the existence of globally defined weak solutions to the Navier-Stokes equations, J. Math. Fluid Mech., 3 (2001), 358-392.doi: 10.1007/PL00000976. |
[15] |
J. F. Gerbeau and C. Le Bris, Existence of solution for a density-dependent magnetohydrodynamic equation, Adv. Differential Equations, 2 (1997), 427-452. |
[16] |
G. Gui, Global well-posedness of the two-dimensional incompressible magnetohydrodynamics system withvariable density and electrical conductivity, J. Functional Analysis, 267 (2014), 1488-1539.doi: 10.1016/j.jfa.2014.06.002. |
[17] |
C. He and Z. Xin, Partial regularity of suitable weak solutions to the incompressible magnetohydrodynamic equations, J. Functional Analysis, 227 (2005), 113-152.doi: 10.1016/j.jfa.2005.06.009. |
[18] |
T. Hmidi and S. Keraani, On the global well-posedness of the Boussinesq system with zero viscosity, Indiana Univ. Math. J., 58 (2009), 1591-1618.doi: 10.1512/iumj.2009.58.3590. |
[19] |
T. Hmidi and F. Rousset, Global well-posedness for the Navier-Stokes-Boussinesq system with axisymmetric data, Ann. I. H. Poincare-AN., 27 (2010), 1227-1246.doi: 10.1016/j.anihpc.2010.06.001. |
[20] |
T. Hmidi and F. Rousset, Global well-posedness for the Euler-Boussinesq system with axisymmetric data, J. Functional Analysis, 260 (2011), 745-796.doi: 10.1016/j.jfa.2010.10.012. |
[21] |
T. Y. Hou and C. Li, Global well-posedness of the viscous Boussinesq equations, Discrete Contin. Dyn. Syst., 12 (2005), 1-12. |
[22] |
O. A. Ladyzhenskaya, V. A. Solonnikov and N. N. Uraltseva, Linear and Quasilinear Equations of Parabolic Type, American Mathematical Society, 1968. |
[23] |
M.-J. Lai, R. Pan and K. Zhao, Initial boundary value problem for two-dimensional viscous Boussinesq equations, Arch. Ration. Mech. Anal., 199 (2011), 739-760.doi: 10.1007/s00205-010-0357-z. |
[24] |
L. D. Laudau and E. M. Lifshitz, Electrodynamics of Continuous Media, 2nd ed., Pergamon, New York, 1984. |
[25] |
D. Li and X. Xu, Global wellposedness of an inviscid 2D Boussinesq system with nonlinear thermal diffusivity, Dyn. Partial Differ. Equ., 10 (2013), 255-265.doi: 10.4310/DPDE.2013.v10.n3.a2. |
[26] |
F. Lin, L. Xu and P. Zhang, Global small solutions of 2-D incompressible MHD system, J. Differential Equations, 259 (2015), 5440-5485, arXiv: 1302.5877v2.doi: 10.1016/j.jde.2015.06.034. |
[27] |
F. Lin and P. Zhang, Global small solutions to an MHD-type system: The three-dimensional case, Comm. Pure Appl. Math., 67 (2014), 531-580.doi: 10.1002/cpa.21506. |
[28] |
P. L. Lions, Mathematical Topics in Fluid Mechanics, vol. I, II. Oxford University Press, New York, 1996, 1998. |
[29] |
X. Ren, J. Wu, Z. Xiang and Z. Zhang, Global existence and decay of smooth solution for the 2-D MHD equations without magnetic diffusion, J. Functional Analysis, 267 (2014), 503-541.doi: 10.1016/j.jfa.2014.04.020. |
[30] |
M. Sermange and R. Temam, Some mathematical questions related to the MHD equations}, Comm. Pure Appl. Math., 36 (1983), 635-664.doi: 10.1002/cpa.3160360506. |
[31] |
W. von Wahl, Estimating $\nabla u$ by divu and curlu, Math. Methods Appl. Sci., 15 (1992), 123-143.doi: 10.1002/mma.1670150206. |
[32] |
C. Wang and Z. Zhang, Global well-posedness for 2-D Boussinesq system with the temperature-density viscosity and thermal diffusivity, Adv. Math., 228 (2011), 43-62.doi: 10.1016/j.aim.2011.05.008. |