\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Global existence and uniqueness of the solution for the fractional Schrödinger-KdV-Burgers system

Abstract Related Papers Cited by
  • In this paper, we consider a fractional Schrödinger-KdV-Burgers system. First, the local existence and uniqueness of solution is obtained by contraction method. Then by some a priori estimates, global existence and uniqueness of smooth solution for this system is proved. Moreover, the regularity of the solution is improved.
    Mathematics Subject Classification: Primary: 26A33; Secondary: 35Q53, 35Q55.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    D. Bekiranov, T. Ogawa and G. Ponce, Weak solvability and well-posedness of a couples Schrödinger-Korteweg de Vries equation for capillary-gravity wave interactions, Processdings of the AMS, 125 (1997), 2907-2919.doi: 10.1090/S0002-9939-97-03941-5.

    [2]

    J. Canosa and J. Gazdag, The Korteweg-de Vries-Burgers equation, Journal of Computational Physics, 23 (1977), 393-403.doi: 10.1016/0021-9991(77)90070-5.

    [3]

    G. Carlson, Investigation of Fractional Capacitor Approximations by Means of Regular Newton Processes, Kansas State University, 1964.

    [4]

    R. R. Coifman and Y. Meyer, Nonlinear harmonic analysis, operator theory and P.D.E., Beijing Lectures in Harmonic Analysis, Ann. of Math. Stud., Princeton Univ. Press, Princeton, NJ, 112 (1986), 3-45.

    [5]

    A. J. Corcho and F. Linares, Well-posedness for the Schrödinger-Korteweg-de Vries system, Trans. Amer. Math. Soc., 359 (2007), 4089-4106.doi: 10.1090/S0002-9947-07-04239-0.

    [6]

    W. Deng, Generalized synchronization in fractional order systems, Physical Review E, 75 (2007), 056201.doi: 10.1103/PhysRevE.75.056201.

    [7]

    A. Friedman, Partial Differential Equations, Holt, Reinhart and Winston, 1969.

    [8]

    B. Guo, The initial and periodic value problems of one class couples Schrödinger-Korteweg-de Vries equations, Acta Math. Sinica, Chinese Series, 26 (1983), 513-532.

    [9]

    B. Guo, Y. Han and J. Xin, Existence of the global smooth solution to the period boundary value problem of fractional nonlinear Schrödinger equation, Appl. Math. and Comp., 204 (2008), 468-477.doi: 10.1016/j.amc.2008.07.003.

    [10]

    B. Guo and C. Miao, Well-posedness of the Cauchy problem for the coupled system of the Schrödinger-KdV equations, Acta Math. Sinica, English Series, 15 (1999), 215-224.doi: 10.1007/BF02650665.

    [11]

    X. Guo and M. Xu, Some physical applications of fractional Schrödinger equation, J. Math. Phys., 47 (2006), 082104, 9pp.doi: 10.1063/1.2235026.

    [12]

    R. Hilfer, Applications of Fractional Calculus in Physics, World Scientific, Singapore, 2000.doi: 10.1142/9789812817747.

    [13]

    T. Kato, Liapunov functions and monotonicity in the Navier-Stokes equations, Lecture Notes in Mathematics, Springer-Verlag, 1450 (1990), 53-63.doi: 10.1007/BFb0084898.

    [14]

    T. Kato and G. Ponce, Commutator estimates and the Euler and Navier-Stokes equations, Comm. Pure Appl. Math., 41 (1988), 891-907.doi: 10.1002/cpa.3160410704.

    [15]

    C. Kenig, G. Ponce and L. Vega, Well-posedness of the initial value problem for the Korteweg-de Vries equation, J. Amer. Math. Soc., 4 (1991), 323-347.doi: 10.1090/S0894-0347-1991-1086966-0.

    [16]

    C. Kenig, G. Ponce and L. Vega, Well-posedness and scattering results for the generalized Korteweg-de Vries equation via the contraction principle, Comm. Pure. Appl. Math., 46 (1993), 527-620.doi: 10.1002/cpa.3160460405.

    [17]

    D. Kusnezov, A. Bulgac and G. Dang, Quantum levy processes and fractional kinetics, Physical Review Letters, 82 (1999), 1136-1139.doi: 10.1103/PhysRevLett.82.1136.

    [18]

    N. Laskin, Fractional quantum mechanics and Lévy integrals, Phys. Lett. A, 268 (2000), 298-305.doi: 10.1016/S0375-9601(00)00201-2.

    [19]

    N. Laskin, Fractional quantum mechanics, Phys. Rev. E, 62 (2000), 3135-3145.doi: 10.1103/PhysRevE.62.3135.

    [20]

    N. Laskin, Fractional Schrödinger equation, Phys. Rev. E, 66 (2002), 056108, 7pp.doi: 10.1103/PhysRevE.66.056108.

    [21]

    F. Mainardi, Fractional calculus: Some basic problems in continuum and statistical of the second kind, Math. Comp., 45 (1985), 463-469.

    [22]

    F. Mainardi, Fractional relaxation-oscillation and fractional diffusion-wave phenomena, Chaos Solitons Fractals, 7 (1996), 1461-1477.doi: 10.1016/0960-0779(95)00125-5.

    [23]

    K. Nishihara and S. V. Rajopadhye, Asymptotic behavior of solutions to the Korteweg-de Vries-Burgers equation, Diff. Int. Equation, 11 (1998), 85-93.

    [24]

    A. Oustaloup and P. Coiffet, Systemes Asservis Lineaires D'ordre Fractionnaire: Theorie et Pratique, Masson, 1983.

    [25]

    I. Podlubny, Fractional Differential Equations: An Introduction to Fractional Deriva Tives, Fractional Differential Equations, to Methods of Their Solution and some of Their Applications, Academic Press, San Diego, 1999.

    [26]

    N. Sugimoto, Burgers equation with a fractional derivative; hereditary effects on nonlinear acoustic waves, Journal of Fluid Mechanics Digital Archive, 225 (1991), 631-653.doi: 10.1017/S0022112091002203.

    [27]

    D. Tomasz and C. Sun, Asymptotic behavior of the generalized Korteweg-de Vries-Burgers equation, J. Evol. Equ., 10 (2010), 571-595.doi: 10.1007/s00028-010-0062-2.

    [28]

    B. J. West, M. Bologna and P. Grigolini, Physical of Fractal Operators, Springer, New York, 2003.doi: 10.1007/978-0-387-21746-8.

    [29]

    H. Yin, H. Zhao and L. Zhou, Convergence rate of solutions toward traveling waves for the Cauchy problem of generalized Korteweg-de Vries-Burgers equations, Nonlinear Anal. TMA, 71 (2009), 3981-3991.doi: 10.1016/j.na.2009.02.068.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(129) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return