-
Previous Article
Approximation of random invariant manifolds for a stochastic Swift-Hohenberg equation
- DCDS-S Home
- This Issue
-
Next Article
Existence of positive solutions for a class of Kirchhoff type equations in $\mathbb{R}^3$
Global existence and uniqueness of the solution for the fractional Schrödinger-KdV-Burgers system
1. | Department of Mathematics, China University of Mining and Technology Beijing, Beijing 100083, China |
2. | Department of Mathematical science, Tsinghua University, Beijing 100084, China |
3. | Institute of Applied Physics and Computational Mathematics, Beijing 100088, China |
References:
[1] |
D. Bekiranov, T. Ogawa and G. Ponce, Weak solvability and well-posedness of a couples Schrödinger-Korteweg de Vries equation for capillary-gravity wave interactions, Processdings of the AMS, 125 (1997), 2907-2919.
doi: 10.1090/S0002-9939-97-03941-5. |
[2] |
J. Canosa and J. Gazdag, The Korteweg-de Vries-Burgers equation, Journal of Computational Physics, 23 (1977), 393-403.
doi: 10.1016/0021-9991(77)90070-5. |
[3] |
G. Carlson, Investigation of Fractional Capacitor Approximations by Means of Regular Newton Processes, Kansas State University, 1964. |
[4] |
R. R. Coifman and Y. Meyer, Nonlinear harmonic analysis, operator theory and P.D.E., Beijing Lectures in Harmonic Analysis, Ann. of Math. Stud., Princeton Univ. Press, Princeton, NJ, 112 (1986), 3-45. |
[5] |
A. J. Corcho and F. Linares, Well-posedness for the Schrödinger-Korteweg-de Vries system, Trans. Amer. Math. Soc., 359 (2007), 4089-4106.
doi: 10.1090/S0002-9947-07-04239-0. |
[6] |
W. Deng, Generalized synchronization in fractional order systems, Physical Review E, 75 (2007), 056201.
doi: 10.1103/PhysRevE.75.056201. |
[7] |
A. Friedman, Partial Differential Equations, Holt, Reinhart and Winston, 1969. |
[8] |
B. Guo, The initial and periodic value problems of one class couples Schrödinger-Korteweg-de Vries equations, Acta Math. Sinica, Chinese Series, 26 (1983), 513-532. |
[9] |
B. Guo, Y. Han and J. Xin, Existence of the global smooth solution to the period boundary value problem of fractional nonlinear Schrödinger equation, Appl. Math. and Comp., 204 (2008), 468-477.
doi: 10.1016/j.amc.2008.07.003. |
[10] |
B. Guo and C. Miao, Well-posedness of the Cauchy problem for the coupled system of the Schrödinger-KdV equations, Acta Math. Sinica, English Series, 15 (1999), 215-224.
doi: 10.1007/BF02650665. |
[11] |
X. Guo and M. Xu, Some physical applications of fractional Schrödinger equation, J. Math. Phys., 47 (2006), 082104, 9pp.
doi: 10.1063/1.2235026. |
[12] |
R. Hilfer, Applications of Fractional Calculus in Physics, World Scientific, Singapore, 2000.
doi: 10.1142/9789812817747. |
[13] |
T. Kato, Liapunov functions and monotonicity in the Navier-Stokes equations, Lecture Notes in Mathematics, Springer-Verlag, 1450 (1990), 53-63.
doi: 10.1007/BFb0084898. |
[14] |
T. Kato and G. Ponce, Commutator estimates and the Euler and Navier-Stokes equations, Comm. Pure Appl. Math., 41 (1988), 891-907.
doi: 10.1002/cpa.3160410704. |
[15] |
C. Kenig, G. Ponce and L. Vega, Well-posedness of the initial value problem for the Korteweg-de Vries equation, J. Amer. Math. Soc., 4 (1991), 323-347.
doi: 10.1090/S0894-0347-1991-1086966-0. |
[16] |
C. Kenig, G. Ponce and L. Vega, Well-posedness and scattering results for the generalized Korteweg-de Vries equation via the contraction principle, Comm. Pure. Appl. Math., 46 (1993), 527-620.
doi: 10.1002/cpa.3160460405. |
[17] |
D. Kusnezov, A. Bulgac and G. Dang, Quantum levy processes and fractional kinetics, Physical Review Letters, 82 (1999), 1136-1139.
doi: 10.1103/PhysRevLett.82.1136. |
[18] |
N. Laskin, Fractional quantum mechanics and Lévy integrals, Phys. Lett. A, 268 (2000), 298-305.
doi: 10.1016/S0375-9601(00)00201-2. |
[19] |
N. Laskin, Fractional quantum mechanics, Phys. Rev. E, 62 (2000), 3135-3145.
doi: 10.1103/PhysRevE.62.3135. |
[20] |
N. Laskin, Fractional Schrödinger equation, Phys. Rev. E, 66 (2002), 056108, 7pp.
doi: 10.1103/PhysRevE.66.056108. |
[21] |
F. Mainardi, Fractional calculus: Some basic problems in continuum and statistical of the second kind, Math. Comp., 45 (1985), 463-469. |
[22] |
F. Mainardi, Fractional relaxation-oscillation and fractional diffusion-wave phenomena, Chaos Solitons Fractals, 7 (1996), 1461-1477.
doi: 10.1016/0960-0779(95)00125-5. |
[23] |
K. Nishihara and S. V. Rajopadhye, Asymptotic behavior of solutions to the Korteweg-de Vries-Burgers equation, Diff. Int. Equation, 11 (1998), 85-93. |
[24] |
A. Oustaloup and P. Coiffet, Systemes Asservis Lineaires D'ordre Fractionnaire: Theorie et Pratique, Masson, 1983. |
[25] |
I. Podlubny, Fractional Differential Equations: An Introduction to Fractional Deriva Tives, Fractional Differential Equations, to Methods of Their Solution and some of Their Applications, Academic Press, San Diego, 1999. |
[26] |
N. Sugimoto, Burgers equation with a fractional derivative; hereditary effects on nonlinear acoustic waves, Journal of Fluid Mechanics Digital Archive, 225 (1991), 631-653.
doi: 10.1017/S0022112091002203. |
[27] |
D. Tomasz and C. Sun, Asymptotic behavior of the generalized Korteweg-de Vries-Burgers equation, J. Evol. Equ., 10 (2010), 571-595.
doi: 10.1007/s00028-010-0062-2. |
[28] |
B. J. West, M. Bologna and P. Grigolini, Physical of Fractal Operators, Springer, New York, 2003.
doi: 10.1007/978-0-387-21746-8. |
[29] |
H. Yin, H. Zhao and L. Zhou, Convergence rate of solutions toward traveling waves for the Cauchy problem of generalized Korteweg-de Vries-Burgers equations, Nonlinear Anal. TMA, 71 (2009), 3981-3991.
doi: 10.1016/j.na.2009.02.068. |
show all references
References:
[1] |
D. Bekiranov, T. Ogawa and G. Ponce, Weak solvability and well-posedness of a couples Schrödinger-Korteweg de Vries equation for capillary-gravity wave interactions, Processdings of the AMS, 125 (1997), 2907-2919.
doi: 10.1090/S0002-9939-97-03941-5. |
[2] |
J. Canosa and J. Gazdag, The Korteweg-de Vries-Burgers equation, Journal of Computational Physics, 23 (1977), 393-403.
doi: 10.1016/0021-9991(77)90070-5. |
[3] |
G. Carlson, Investigation of Fractional Capacitor Approximations by Means of Regular Newton Processes, Kansas State University, 1964. |
[4] |
R. R. Coifman and Y. Meyer, Nonlinear harmonic analysis, operator theory and P.D.E., Beijing Lectures in Harmonic Analysis, Ann. of Math. Stud., Princeton Univ. Press, Princeton, NJ, 112 (1986), 3-45. |
[5] |
A. J. Corcho and F. Linares, Well-posedness for the Schrödinger-Korteweg-de Vries system, Trans. Amer. Math. Soc., 359 (2007), 4089-4106.
doi: 10.1090/S0002-9947-07-04239-0. |
[6] |
W. Deng, Generalized synchronization in fractional order systems, Physical Review E, 75 (2007), 056201.
doi: 10.1103/PhysRevE.75.056201. |
[7] |
A. Friedman, Partial Differential Equations, Holt, Reinhart and Winston, 1969. |
[8] |
B. Guo, The initial and periodic value problems of one class couples Schrödinger-Korteweg-de Vries equations, Acta Math. Sinica, Chinese Series, 26 (1983), 513-532. |
[9] |
B. Guo, Y. Han and J. Xin, Existence of the global smooth solution to the period boundary value problem of fractional nonlinear Schrödinger equation, Appl. Math. and Comp., 204 (2008), 468-477.
doi: 10.1016/j.amc.2008.07.003. |
[10] |
B. Guo and C. Miao, Well-posedness of the Cauchy problem for the coupled system of the Schrödinger-KdV equations, Acta Math. Sinica, English Series, 15 (1999), 215-224.
doi: 10.1007/BF02650665. |
[11] |
X. Guo and M. Xu, Some physical applications of fractional Schrödinger equation, J. Math. Phys., 47 (2006), 082104, 9pp.
doi: 10.1063/1.2235026. |
[12] |
R. Hilfer, Applications of Fractional Calculus in Physics, World Scientific, Singapore, 2000.
doi: 10.1142/9789812817747. |
[13] |
T. Kato, Liapunov functions and monotonicity in the Navier-Stokes equations, Lecture Notes in Mathematics, Springer-Verlag, 1450 (1990), 53-63.
doi: 10.1007/BFb0084898. |
[14] |
T. Kato and G. Ponce, Commutator estimates and the Euler and Navier-Stokes equations, Comm. Pure Appl. Math., 41 (1988), 891-907.
doi: 10.1002/cpa.3160410704. |
[15] |
C. Kenig, G. Ponce and L. Vega, Well-posedness of the initial value problem for the Korteweg-de Vries equation, J. Amer. Math. Soc., 4 (1991), 323-347.
doi: 10.1090/S0894-0347-1991-1086966-0. |
[16] |
C. Kenig, G. Ponce and L. Vega, Well-posedness and scattering results for the generalized Korteweg-de Vries equation via the contraction principle, Comm. Pure. Appl. Math., 46 (1993), 527-620.
doi: 10.1002/cpa.3160460405. |
[17] |
D. Kusnezov, A. Bulgac and G. Dang, Quantum levy processes and fractional kinetics, Physical Review Letters, 82 (1999), 1136-1139.
doi: 10.1103/PhysRevLett.82.1136. |
[18] |
N. Laskin, Fractional quantum mechanics and Lévy integrals, Phys. Lett. A, 268 (2000), 298-305.
doi: 10.1016/S0375-9601(00)00201-2. |
[19] |
N. Laskin, Fractional quantum mechanics, Phys. Rev. E, 62 (2000), 3135-3145.
doi: 10.1103/PhysRevE.62.3135. |
[20] |
N. Laskin, Fractional Schrödinger equation, Phys. Rev. E, 66 (2002), 056108, 7pp.
doi: 10.1103/PhysRevE.66.056108. |
[21] |
F. Mainardi, Fractional calculus: Some basic problems in continuum and statistical of the second kind, Math. Comp., 45 (1985), 463-469. |
[22] |
F. Mainardi, Fractional relaxation-oscillation and fractional diffusion-wave phenomena, Chaos Solitons Fractals, 7 (1996), 1461-1477.
doi: 10.1016/0960-0779(95)00125-5. |
[23] |
K. Nishihara and S. V. Rajopadhye, Asymptotic behavior of solutions to the Korteweg-de Vries-Burgers equation, Diff. Int. Equation, 11 (1998), 85-93. |
[24] |
A. Oustaloup and P. Coiffet, Systemes Asservis Lineaires D'ordre Fractionnaire: Theorie et Pratique, Masson, 1983. |
[25] |
I. Podlubny, Fractional Differential Equations: An Introduction to Fractional Deriva Tives, Fractional Differential Equations, to Methods of Their Solution and some of Their Applications, Academic Press, San Diego, 1999. |
[26] |
N. Sugimoto, Burgers equation with a fractional derivative; hereditary effects on nonlinear acoustic waves, Journal of Fluid Mechanics Digital Archive, 225 (1991), 631-653.
doi: 10.1017/S0022112091002203. |
[27] |
D. Tomasz and C. Sun, Asymptotic behavior of the generalized Korteweg-de Vries-Burgers equation, J. Evol. Equ., 10 (2010), 571-595.
doi: 10.1007/s00028-010-0062-2. |
[28] |
B. J. West, M. Bologna and P. Grigolini, Physical of Fractal Operators, Springer, New York, 2003.
doi: 10.1007/978-0-387-21746-8. |
[29] |
H. Yin, H. Zhao and L. Zhou, Convergence rate of solutions toward traveling waves for the Cauchy problem of generalized Korteweg-de Vries-Burgers equations, Nonlinear Anal. TMA, 71 (2009), 3981-3991.
doi: 10.1016/j.na.2009.02.068. |
[1] |
Jiaxiang Cai, Juan Chen, Bin Yang. Fully decoupled schemes for the coupled Schrödinger-KdV system. Discrete and Continuous Dynamical Systems - B, 2019, 24 (10) : 5523-5538. doi: 10.3934/dcdsb.2019069 |
[2] |
Mo Chen. Recurrent solutions of the Schrödinger-KdV system with boundary forces. Discrete and Continuous Dynamical Systems - B, 2021, 26 (9) : 5149-5170. doi: 10.3934/dcdsb.2020337 |
[3] |
Kihoon Seong. Low regularity a priori estimates for the fourth order cubic nonlinear Schrödinger equation. Communications on Pure and Applied Analysis, 2020, 19 (12) : 5437-5473. doi: 10.3934/cpaa.2020247 |
[4] |
Gerd Grubb. Limited regularity of solutions to fractional heat and Schrödinger equations. Discrete and Continuous Dynamical Systems, 2019, 39 (6) : 3609-3634. doi: 10.3934/dcds.2019148 |
[5] |
Wenxiong Chen, Congming Li. A priori estimate for the Nirenberg problem. Discrete and Continuous Dynamical Systems - S, 2008, 1 (2) : 225-233. doi: 10.3934/dcdss.2008.1.225 |
[6] |
Mengyao Chen, Qi Li, Shuangjie Peng. Bound states for fractional Schrödinger-Poisson system with critical exponent. Discrete and Continuous Dynamical Systems - S, 2021, 14 (6) : 1819-1835. doi: 10.3934/dcdss.2021038 |
[7] |
Yongsheng Jiang, Huan-Song Zhou. A sharp decay estimate for nonlinear Schrödinger equations with vanishing potentials. Communications on Pure and Applied Analysis, 2010, 9 (6) : 1723-1730. doi: 10.3934/cpaa.2010.9.1723 |
[8] |
Hiroyuki Hirayama. Well-posedness and scattering for a system of quadratic derivative nonlinear Schrödinger equations with low regularity initial data. Communications on Pure and Applied Analysis, 2014, 13 (4) : 1563-1591. doi: 10.3934/cpaa.2014.13.1563 |
[9] |
Hartmut Pecher. Low regularity well-posedness for the 3D Klein - Gordon - Schrödinger system. Communications on Pure and Applied Analysis, 2012, 11 (3) : 1081-1096. doi: 10.3934/cpaa.2012.11.1081 |
[10] |
Salah Missaoui, Ezzeddine Zahrouni. Regularity of the attractor for a coupled Klein-Gordon-Schrödinger system with cubic nonlinearities in $\mathbb{R}^2$. Communications on Pure and Applied Analysis, 2015, 14 (2) : 695-716. doi: 10.3934/cpaa.2015.14.695 |
[11] |
Masoumeh Hosseininia, Mohammad Hossein Heydari, Carlo Cattani. A wavelet method for nonlinear variable-order time fractional 2D Schrödinger equation. Discrete and Continuous Dynamical Systems - S, 2021, 14 (7) : 2273-2295. doi: 10.3934/dcdss.2020295 |
[12] |
Giuseppe Floridia, Hiroshi Takase, Masahiro Yamamoto. A Carleman estimate and an energy method for a first-order symmetric hyperbolic system. Inverse Problems and Imaging, , () : -. doi: 10.3934/ipi.2022016 |
[13] |
Mouhamed Moustapha Fall. Regularity estimates for nonlocal Schrödinger equations. Discrete and Continuous Dynamical Systems, 2019, 39 (3) : 1405-1456. doi: 10.3934/dcds.2019061 |
[14] |
Fengping Yao. Optimal regularity for parabolic Schrödinger operators. Communications on Pure and Applied Analysis, 2013, 12 (3) : 1407-1414. doi: 10.3934/cpaa.2013.12.1407 |
[15] |
Salah Missaoui. Regularity of the attractor for a coupled Klein-Gordon-Schrödinger system in $ \mathbb{R}^3 $ nonlinear KGS system. Communications on Pure and Applied Analysis, 2022, 21 (2) : 567-584. doi: 10.3934/cpaa.2021189 |
[16] |
Guowei Dai, Rushun Tian, Zhitao Zhang. Global bifurcations and a priori bounds of positive solutions for coupled nonlinear Schrödinger Systems. Discrete and Continuous Dynamical Systems - S, 2019, 12 (7) : 1905-1927. doi: 10.3934/dcdss.2019125 |
[17] |
Xia Sun, Kaimin Teng. Positive bound states for fractional Schrödinger-Poisson system with critical exponent. Communications on Pure and Applied Analysis, 2020, 19 (7) : 3735-3768. doi: 10.3934/cpaa.2020165 |
[18] |
Kaimin Teng, Xian Wu. Concentration of bound states for fractional Schrödinger-Poisson system via penalization methods. Communications on Pure and Applied Analysis, 2022, 21 (4) : 1157-1187. doi: 10.3934/cpaa.2022014 |
[19] |
Weizhu Bao, Chunmei Su. Uniform error estimates of a finite difference method for the Klein-Gordon-Schrödinger system in the nonrelativistic and massless limit regimes. Kinetic and Related Models, 2018, 11 (4) : 1037-1062. doi: 10.3934/krm.2018040 |
[20] |
E. Compaan, N. Tzirakis. Low-regularity global well-posedness for the Klein-Gordon-Schrödinger system on $ \mathbb{R}^+ $. Discrete and Continuous Dynamical Systems, 2019, 39 (7) : 3867-3895. doi: 10.3934/dcds.2019156 |
2020 Impact Factor: 2.425
Tools
Metrics
Other articles
by authors
[Back to Top]