\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Local classical solutions of compressible Navier-Stokes-Smoluchowski equations with vacuum

Abstract Related Papers Cited by
  • This paper is concerned with the Cauchy problem for compressible Navier-Stokes-Smoluchowski equations with vacuum in $\mathbb{R}^3$. We prove both existence and uniqueness of the local strong solution, and then obtain a local classical solution by deriving the smoothing effect of the strong solution for $t>0$.
    Mathematics Subject Classification: Primary: 35Q30, 76N10; Secondary: 46E35.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    C. Baranger, L. Boudin, P. E. Jabin and S. Mancini, A modeling of biospray for the upper airways, CEMRACS 2004 mathematics and applications to biology and medicine, ESAIM Proc, 14 (2005), 41-47.

    [2]

    J. Ballew, Low Mach number limits to the Navier-Stokes-Smoluchowski system. Hyperbolic Problems: Theory, Numerics, Applications, AIMS Series on Applied Mathematics, 8 (2014), 301-308.

    [3]

    J. Ballew, Mathematical Topics in Fluid-Particle Interaction, Ph.D thesis, University of Maryland, USA, 2014.

    [4]

    J. Ballew and K. Trivisa, Weakly dissipative solutions and weak strong uniqueness for the Navier Stokes Smoluchowski system, Nonlinear Analysis Series A: Theory, Methods Applications, 91 ( 2013), 1-19.doi: 10.1016/j.na.2013.06.002.

    [5]

    J. Ballew and K. Trivisa, Viscous and inviscid models in fluid-particle interaction, Communications in Information Systems, 13 (2013), 45-78.doi: 10.4310/CIS.2013.v13.n1.a2.

    [6]

    S. Berres, R. Bürger, K. H. Karlsen and E. M. Tory, Strongly degenerate parabolic hyperbolic systems modeling polydisperse sedimentation with compression, SIAM J. Appl. Math., 64 (2003), 41-80.doi: 10.1137/S0036139902408163.

    [7]

    H. J. Choe and H. Kim, Strong solutions of the Navier-Stokes equations for isentropic compressible fluids, J. Diff. Equ., 190 (2003), 504-523.doi: 10.1016/S0022-0396(03)00015-9.

    [8]

    H. J. Choe and H. Kim, Global existence of the radially symmetric solutions of the Navier Stokes equations for the isentropic compressible fluids, Math. Methods Appl. Sci., 28 (2005), 1-28.doi: 10.1002/mma.545.

    [9]

    J. A. Carrillo and T. Goudon, Stability and asymptotic analysis of a fluid-particle interaction model, Commun. Partial Differ. Equ., 31 (2006), 1349-1379.doi: 10.1080/03605300500394389.

    [10]

    J. A. Carrillo, T. Karper and K. Trivisa, On the dynamics of a fluid-particle interaction model: The bubbling regime, Nonlinear Anal., 74 (2011), 2778-2801.doi: 10.1016/j.na.2010.12.031.

    [11]

    Y. Cho and H. Kim, On classical solutions of the compressible Navier-Stokes equations with nonnegative initial densities, Manuscripta Math., 120 (2006), 91-129.doi: 10.1007/s00229-006-0637-y.

    [12]

    Y. Cho, H. J. Choe and H. Kim, Unique solvability of the initial boundary value problems for compressible viscous fluids, J. Math. Pures Appl., 83 (2004), 243-275.doi: 10.1016/j.matpur.2003.11.004.

    [13]

    S. J. Ding, J. R. Huang and F. G. Xia, A free boundary problem for compressible hydrodynamic flow of liquid crystals in one dimension, J. Diff. Equ., 255 (2013), 3848-3879.doi: 10.1016/j.jde.2013.07.039.

    [14]

    S. J. Ding, H. Y. Wen, L. Yao and C. J. Zhu, Global spherically symmetric classical solution to compressible Navier Stokes equations with large initial data and vacuum, SIAM J. Math. Anal., 44 (2012), 1257-1278.doi: 10.1137/110836663.

    [15]

    D. Y. Fang, R. Z. Zi and T. Zhang, Global classical large solutions to a 1D fluid-particle interaction model: The bubbling regime, J. Math. Phys., 53 (2012), 033706, 21pp.doi: 10.1063/1.3693979.

    [16]

    E. Feireisl, Dynamics of Viscous Compressible Fluids, Oxford: Oxford University Press, 2004.

    [17]

    E. Feireisl, A. Novotný and H. Petzeltová, On the existence of globally defined weak solutions to the Navier-Stokes equations of compressible isentropic fluids, J. Math. Fluid Mech., 3 (2001), 358-392.doi: 10.1007/PL00000976.

    [18]

    E. Feireisl and H. Petzeltová, Large-time behavior of solutions to the Navier-Stokes equations of compressible flow, Arch. Rational Mech. Anal., 150 (1999), 77-96.doi: 10.1007/s002050050181.

    [19]

    G. P. Galdi, An Introduction to the Mathematical Theory of the Navier-Stokes Equations, Second edition. Springer Monographs in Mathematics. Springer, New York, 2011.doi: 10.1007/978-0-387-09620-9.

    [20]

    J. R. Huang and S. J. Ding, Compressible hydrodynamic flow of nematic liquid crystals with vacuum, J. Diff. Equ., 258 (2015), 1653-1684.doi: 10.1016/j.jde.2014.11.008.

    [21]

    T. Huang, C. Y. Wang and H. Y. Wen, Blow Up Criterion for Compressible Nematic Liquid Crystal Flows in Dimension Three, Arch. Rational Mech. Anal., 204 (2012), 285-311.doi: 10.1007/s00205-011-0476-1.

    [22]

    T. Huang, C. Y. Wang and H. Y. Wen, Strong solutions of the compressible nematic liquid crystal flow, J. Diff. Equ., 252 (2012), 2222-2265.doi: 10.1016/j.jde.2011.07.036.

    [23]

    X. D. Huang and J. Li, Global Well-Posedness of Classical Solutions to the Cauchy problem of Two-Dimensional Baratropic Compressible Navier-Stokes System with Vacuum and Large Initial Data, preprint, arXiv:1207.3746.

    [24]

    X. D. Huang, J. Li and Z. P. Xin, Global well-posedness of classical solutions with large oscillations and vacuum to the three-dimensional isentropic compressible Navier-Stokes equations, Comm. Pure. Appl. Math., 65 (2012), 549-585.doi: 10.1002/cpa.21382.

    [25]

    X. F. Hou, H. Y. Peng and C. J. Zhu, Global classical solution to 3D isentropic compressible Navier-Stokes equations with large initial data and vacuum, preprint, arXiv:1503.02910.

    [26]

    X. P. Hu and H. Wu, Global solution to the three-dimensional compressible flow of liquid crystals, SIAM J. Math. Anal., 45 (2013), 2678-2699.doi: 10.1137/120898814.

    [27]

    J. Li, Z. H. Xu and J. W. Zhang, Global well-posedness with large oscillations and vacuum to the three-dimensional equations of compressible nematic liquid crystal flows, preprint, arXiv:1204.4966.

    [28]

    P. L. Lions, Mathematical Topics in Fluid Dynamics, Vol. 2, Compressible Models, Oxford University Press, Oxford, 1998.

    [29]

    S. Ma, Classical solutions for the compressible liquid crystal flows with nonnegative initial densities, J. Math. Anal. Appl., 397 (2013), 595-618.doi: 10.1016/j.jmaa.2012.08.010.

    [30]

    Y. K. Song, H. J. Yuan, Y. Chen and Z. D. Guo, Strong solutions for a 1D fluid-particle interaction non-newtonian model: The bubbling regime, J. Math. Phys., 54 (2013), 091501, 12pp.doi: 10.1063/1.4820446.

    [31]

    I. Vinkovic, C. Aguirre, S. Simoëns and M. Gorokhovski, Large eddy simulation of droplet dispersion for inhomogeneous turbulent wall flow, International Journal of Multiphase Flow, 32 (2006), 344-364.doi: 10.1016/j.ijmultiphaseflow.2005.10.005.

    [32]

    F. A. Williams, Combustion Theory, 2nd ed, Benjamin Cummings Publ, 1985.

    [33]

    F. A. Williams, Spray combustion and atomization, Phys. Fluids, 1 (1958), 541-555.doi: 10.1063/1.1724379.

    [34]

    H. Y. Wen and C. J. Zhu, Blow-up criterions of strong solutions to 3D compressible Navier-Stokes equations with vacuum, Advances in Mathematics, 248 (2013), 534-572.doi: 10.1016/j.aim.2013.07.018.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(102) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return