-
Previous Article
Existence and multiplicity of positive solutions for a class of Kirchhoff type problems at resonance
- DCDS-S Home
- This Issue
-
Next Article
Well-posedness for the three-dimensional compressible liquid crystal flows
Existence, regularity and approximation of global attractors for weakly dissipative p-Laplace equations
1. | School of Mathematics and Statistics, Southwest University, Chongqing 400715 |
References:
[1] |
P. W. Bates, K. Lu and B. Wang, Random attractors for stochastic reaction-diffusion equations on unbounded domains, J. Differ. Equ., 246 (2009), 845-869.
doi: 10.1016/j.jde.2008.05.017. |
[2] |
P. W. Bates, K. Lu and B. Wang, Attractors for lattice dynamical systems, International J. Bifur. Chaos, 11 (2001), 143-153.
doi: 10.1142/S0218127401002031. |
[3] |
A. N. Carvalho, J. A. Langa and J. C. Robinson, Attractor for Infinite-dimensional Non-autonomous Dynamical Systems, Appl. Math. Sciences, Vol. 182, Springer, 2013.
doi: 10.1007/978-1-4614-4581-4. |
[4] |
B. Gess, W. Liu and M. Rockner, Random attractors for a class of stochastic partial differential equations driven by general additive noise, J. Differ. Equ., 251 (2011), 1225-1253.
doi: 10.1016/j.jde.2011.02.013. |
[5] |
B. Gess, Random attractors for degenerate stochastic partial differential equations, J. Dyn. Differ. Equ., 25 (2013), 121-157.
doi: 10.1007/s10884-013-9294-5. |
[6] |
B. Gess, Random attractors for singular stochastic evolution equations, J. Differ. Equ., 255 (2013), 524-559.
doi: 10.1016/j.jde.2013.04.023. |
[7] |
B. Gess, Random attractors for stochastic porous media equations perturbed by space-time linear multiplicative noise, Annals Probability, 42 (2014), 818-864.
doi: 10.1214/13-AOP869. |
[8] |
A. K. Khanmamedov, Existence of a global attractor for the parabolic equation with nonlinear Laplacian principal part in an unbounded domain, J. Math. Anal. Appl., 316 (2006), 601-615.
doi: 10.1016/j.jmaa.2005.05.003. |
[9] |
A. K. Khanmamedov, Global attractors for one dimensional p-Laplacian equation, Nonlinear Anal. TMA, 71 (2009), 155-171.
doi: 10.1016/j.na.2008.10.037. |
[10] |
P. G. Geredeli and A. Khanmamedov, Long-time dynamics of the parabolic p-Laplacian equation, Commun Pure Appl Anal, 12 (2013), 735-754.
doi: 10.3934/cpaa.2013.12.735. |
[11] |
A. Krause, M. Lewis and B. Wang, Dynamics of the non-autonomous stochastic p-Laplace equation driven by multiplicative noise, Appl. Math. Comput., 246 (2014), 365-376.
doi: 10.1016/j.amc.2014.08.033. |
[12] |
A. Krause and B. Wang, Pullback attractors of non-autonomous stochastic degenerate parabolic equations on unbounded domains, J. Math. Anal. Appl., 417 (2014), 1018-1038.
doi: 10.1016/j.jmaa.2014.03.037. |
[13] |
J. Li, Y. R. Li and B. Wang, Random attractors of reaction-diffusion equations with multiplicative noise in $L^p$, Appl. Math. Comput., 215 (2010), 3399-3407.
doi: 10.1016/j.amc.2009.10.033. |
[14] |
J. Li, Y. R. Li and H. Y. Cui, Existence and upper semicontinuity of random attractors for stochastic p-Laplacian equations on unbounded domains, Electronic J. Differ. Equ., 2014 (2014), 1-27. |
[15] |
Y. R. Li, A. H. Gu and J. Li, Existence and continuity of bi-spatial random attractors and application to stochastic semilinear Laplacian equations, J. Differ. Equ., 258 (2015), 504-534.
doi: 10.1016/j.jde.2014.09.021. |
[16] |
Y. R. Li, H. Y. Cui and J. Li, Upper semi-continuouity and regularity of random attractors on p-times integrable spaces and applications, Nonlinear Anal. TMA, 109 (2014), 33-44.
doi: 10.1016/j.na.2014.06.013. |
[17] |
Y. R. Li and B. L. Guo, Random attractors for quasi-continuous random dynamical systems and applications to stochastic reaction-diffusion equations, J. Differ. Equ., 245 (2008), 1775-1800.
doi: 10.1016/j.jde.2008.06.031. |
[18] |
Y. R. Li and J. Y. Yin, A modified proof of pullback attractors in a Sobolev space for stochastic Fitzhugh-Nagumo equations, Discrete Contin. Dyn. Syst. B, 21 (2016), 1203-1223.
doi: 10.3934/dcdsb.2016.21.1203. |
[19] |
T. F. Ma and M. L. Pelicer, Attractors for weakly damped beam equations with p-Laplacian, Discrete Contin. Dyn. Sys., SI, (2013), 525-534.
doi: 10.3934/proc.2013.2013.525. |
[20] |
J. Simsen, A note on p-Laplacian parabolic problems in R-n, Nonliear Anal. TMA, 75 (2012), 6620-6624.
doi: 10.1016/j.na.2012.08.007. |
[21] |
J. Simsen, M. J. D. Nascimento and M. S. Simsen, Existence and upper semicontinuity of pullback attractors for non-autonomous p-Laplacian parabolic problems, J. Math. Anal. Appl., 413 (2014), 685-699.
doi: 10.1016/j.jmaa.2013.12.019. |
[22] |
B. Wang, Sufficient and necessary criteria for existence of pullback attractors for non-compact random dynamical systems, J. Differ. Equ., 253 (2012), 1544-1583.
doi: 10.1016/j.jde.2012.05.015. |
[23] |
B. Wang and B. Guo, Asymptotic behavior of non-autonomous stochastic equations with nonlinear Laplacian principal part, Electronic J. Differ. Equ., 191 (2013), 1-25. |
[24] |
R. Temam, Infinite-Dimensional Dynamical Systems in Mechanics and Physics, Second ed., Springer-Verlag, New York, 1997.
doi: 10.1007/978-1-4612-0645-3. |
[25] |
G. L. Wang, B. L.Guo and Y. R. Li, The asymptotic behavior of the stochastic Ginzburg-Landou equation with additive noise, Appl. Math. Comput., 198 (2008), 849-857.
doi: 10.1016/j.amc.2007.09.029. |
[26] |
Z. Wang and S. Zhou, Random attractors for stochastic reaction-diffusion equations with multiplicative noise on unbounded domains, J. Math. Anal. Appl., 384 (2011), 160-172.
doi: 10.1016/j.jmaa.2011.02.082. |
[27] |
M. Yang, C. Sun and C. Zhong, Global attractors for $p$-Laplacian equation, J. Math. Anal. Appl., 327 (2007), 1130-1142.
doi: 10.1016/j.jmaa.2006.04.085. |
[28] |
X. Yan and C. Zhong, $L^p$-uniform attractor for nonautonomous reaction-diffusion equations in unbounded domains, J. Math. Phys., 49 (2008), 102705, 17pp.
doi: 10.1063/1.3000575. |
[29] |
J. Y. Yin, Y. R. Li and H. J. Zhao, Random attractors for stochastic semi-linear degenerate parabolic equations with addtive noise in $L^q$, Appl. Math. Comput., 225 (2013), 526-540.
doi: 10.1016/j.amc.2013.09.051. |
[30] |
W. Q. Zhao, Regularity of random attractors for a degenerate parabolic equations driven by additive noise, Appl. Math. Comput., 239 (2014), 358-374.
doi: 10.1016/j.amc.2014.04.106. |
[31] |
W. Zhao and Y. R. Li, $(L^2,L^p)$-random attractors for stochastic reaction-diffusion on unbounded domains, Nonlinear Anal. TMA, 75 (2012), 485-502.
doi: 10.1016/j.na.2011.08.050. |
[32] |
W. Q. Zhao and Y. R. Li, Existence of random attractors for a $p$-Laplacian-type equation with additive noise, Abstr. Appl. Anal., 10 (2011), Article ID 616451, 21pp.
doi: 10.1155/2011/616451. |
[33] |
W. Q. Zhao and Y. R. Li, Random attractors for stochastic semi-linear degenerate parabolic equations with additive noises, Dyn. Partial Differ. Equ., 11 (2014), 269-298.
doi: 10.4310/DPDE.2014.v11.n3.a4. |
[34] |
C. Zhong, M. Yang and C. Sun, The existence of global attractors for the norm-to-weak continuous semigroup and application to the nonlinear reaction-diffusion equations, J. Differ. Equ., 223 (2006), 367-399.
doi: 10.1016/j.jde.2005.06.008. |
show all references
References:
[1] |
P. W. Bates, K. Lu and B. Wang, Random attractors for stochastic reaction-diffusion equations on unbounded domains, J. Differ. Equ., 246 (2009), 845-869.
doi: 10.1016/j.jde.2008.05.017. |
[2] |
P. W. Bates, K. Lu and B. Wang, Attractors for lattice dynamical systems, International J. Bifur. Chaos, 11 (2001), 143-153.
doi: 10.1142/S0218127401002031. |
[3] |
A. N. Carvalho, J. A. Langa and J. C. Robinson, Attractor for Infinite-dimensional Non-autonomous Dynamical Systems, Appl. Math. Sciences, Vol. 182, Springer, 2013.
doi: 10.1007/978-1-4614-4581-4. |
[4] |
B. Gess, W. Liu and M. Rockner, Random attractors for a class of stochastic partial differential equations driven by general additive noise, J. Differ. Equ., 251 (2011), 1225-1253.
doi: 10.1016/j.jde.2011.02.013. |
[5] |
B. Gess, Random attractors for degenerate stochastic partial differential equations, J. Dyn. Differ. Equ., 25 (2013), 121-157.
doi: 10.1007/s10884-013-9294-5. |
[6] |
B. Gess, Random attractors for singular stochastic evolution equations, J. Differ. Equ., 255 (2013), 524-559.
doi: 10.1016/j.jde.2013.04.023. |
[7] |
B. Gess, Random attractors for stochastic porous media equations perturbed by space-time linear multiplicative noise, Annals Probability, 42 (2014), 818-864.
doi: 10.1214/13-AOP869. |
[8] |
A. K. Khanmamedov, Existence of a global attractor for the parabolic equation with nonlinear Laplacian principal part in an unbounded domain, J. Math. Anal. Appl., 316 (2006), 601-615.
doi: 10.1016/j.jmaa.2005.05.003. |
[9] |
A. K. Khanmamedov, Global attractors for one dimensional p-Laplacian equation, Nonlinear Anal. TMA, 71 (2009), 155-171.
doi: 10.1016/j.na.2008.10.037. |
[10] |
P. G. Geredeli and A. Khanmamedov, Long-time dynamics of the parabolic p-Laplacian equation, Commun Pure Appl Anal, 12 (2013), 735-754.
doi: 10.3934/cpaa.2013.12.735. |
[11] |
A. Krause, M. Lewis and B. Wang, Dynamics of the non-autonomous stochastic p-Laplace equation driven by multiplicative noise, Appl. Math. Comput., 246 (2014), 365-376.
doi: 10.1016/j.amc.2014.08.033. |
[12] |
A. Krause and B. Wang, Pullback attractors of non-autonomous stochastic degenerate parabolic equations on unbounded domains, J. Math. Anal. Appl., 417 (2014), 1018-1038.
doi: 10.1016/j.jmaa.2014.03.037. |
[13] |
J. Li, Y. R. Li and B. Wang, Random attractors of reaction-diffusion equations with multiplicative noise in $L^p$, Appl. Math. Comput., 215 (2010), 3399-3407.
doi: 10.1016/j.amc.2009.10.033. |
[14] |
J. Li, Y. R. Li and H. Y. Cui, Existence and upper semicontinuity of random attractors for stochastic p-Laplacian equations on unbounded domains, Electronic J. Differ. Equ., 2014 (2014), 1-27. |
[15] |
Y. R. Li, A. H. Gu and J. Li, Existence and continuity of bi-spatial random attractors and application to stochastic semilinear Laplacian equations, J. Differ. Equ., 258 (2015), 504-534.
doi: 10.1016/j.jde.2014.09.021. |
[16] |
Y. R. Li, H. Y. Cui and J. Li, Upper semi-continuouity and regularity of random attractors on p-times integrable spaces and applications, Nonlinear Anal. TMA, 109 (2014), 33-44.
doi: 10.1016/j.na.2014.06.013. |
[17] |
Y. R. Li and B. L. Guo, Random attractors for quasi-continuous random dynamical systems and applications to stochastic reaction-diffusion equations, J. Differ. Equ., 245 (2008), 1775-1800.
doi: 10.1016/j.jde.2008.06.031. |
[18] |
Y. R. Li and J. Y. Yin, A modified proof of pullback attractors in a Sobolev space for stochastic Fitzhugh-Nagumo equations, Discrete Contin. Dyn. Syst. B, 21 (2016), 1203-1223.
doi: 10.3934/dcdsb.2016.21.1203. |
[19] |
T. F. Ma and M. L. Pelicer, Attractors for weakly damped beam equations with p-Laplacian, Discrete Contin. Dyn. Sys., SI, (2013), 525-534.
doi: 10.3934/proc.2013.2013.525. |
[20] |
J. Simsen, A note on p-Laplacian parabolic problems in R-n, Nonliear Anal. TMA, 75 (2012), 6620-6624.
doi: 10.1016/j.na.2012.08.007. |
[21] |
J. Simsen, M. J. D. Nascimento and M. S. Simsen, Existence and upper semicontinuity of pullback attractors for non-autonomous p-Laplacian parabolic problems, J. Math. Anal. Appl., 413 (2014), 685-699.
doi: 10.1016/j.jmaa.2013.12.019. |
[22] |
B. Wang, Sufficient and necessary criteria for existence of pullback attractors for non-compact random dynamical systems, J. Differ. Equ., 253 (2012), 1544-1583.
doi: 10.1016/j.jde.2012.05.015. |
[23] |
B. Wang and B. Guo, Asymptotic behavior of non-autonomous stochastic equations with nonlinear Laplacian principal part, Electronic J. Differ. Equ., 191 (2013), 1-25. |
[24] |
R. Temam, Infinite-Dimensional Dynamical Systems in Mechanics and Physics, Second ed., Springer-Verlag, New York, 1997.
doi: 10.1007/978-1-4612-0645-3. |
[25] |
G. L. Wang, B. L.Guo and Y. R. Li, The asymptotic behavior of the stochastic Ginzburg-Landou equation with additive noise, Appl. Math. Comput., 198 (2008), 849-857.
doi: 10.1016/j.amc.2007.09.029. |
[26] |
Z. Wang and S. Zhou, Random attractors for stochastic reaction-diffusion equations with multiplicative noise on unbounded domains, J. Math. Anal. Appl., 384 (2011), 160-172.
doi: 10.1016/j.jmaa.2011.02.082. |
[27] |
M. Yang, C. Sun and C. Zhong, Global attractors for $p$-Laplacian equation, J. Math. Anal. Appl., 327 (2007), 1130-1142.
doi: 10.1016/j.jmaa.2006.04.085. |
[28] |
X. Yan and C. Zhong, $L^p$-uniform attractor for nonautonomous reaction-diffusion equations in unbounded domains, J. Math. Phys., 49 (2008), 102705, 17pp.
doi: 10.1063/1.3000575. |
[29] |
J. Y. Yin, Y. R. Li and H. J. Zhao, Random attractors for stochastic semi-linear degenerate parabolic equations with addtive noise in $L^q$, Appl. Math. Comput., 225 (2013), 526-540.
doi: 10.1016/j.amc.2013.09.051. |
[30] |
W. Q. Zhao, Regularity of random attractors for a degenerate parabolic equations driven by additive noise, Appl. Math. Comput., 239 (2014), 358-374.
doi: 10.1016/j.amc.2014.04.106. |
[31] |
W. Zhao and Y. R. Li, $(L^2,L^p)$-random attractors for stochastic reaction-diffusion on unbounded domains, Nonlinear Anal. TMA, 75 (2012), 485-502.
doi: 10.1016/j.na.2011.08.050. |
[32] |
W. Q. Zhao and Y. R. Li, Existence of random attractors for a $p$-Laplacian-type equation with additive noise, Abstr. Appl. Anal., 10 (2011), Article ID 616451, 21pp.
doi: 10.1155/2011/616451. |
[33] |
W. Q. Zhao and Y. R. Li, Random attractors for stochastic semi-linear degenerate parabolic equations with additive noises, Dyn. Partial Differ. Equ., 11 (2014), 269-298.
doi: 10.4310/DPDE.2014.v11.n3.a4. |
[34] |
C. Zhong, M. Yang and C. Sun, The existence of global attractors for the norm-to-weak continuous semigroup and application to the nonlinear reaction-diffusion equations, J. Differ. Equ., 223 (2006), 367-399.
doi: 10.1016/j.jde.2005.06.008. |
[1] |
Li Song, Yangrong Li, Fengling Wang. Controller and asymptotic autonomy of random attractors for stochastic p-Laplace lattice equations. Evolution Equations and Control Theory, 2022 doi: 10.3934/eect.2022010 |
[2] |
Jacson Simsen, José Valero. Global attractors for $p$-Laplacian differential inclusions in unbounded domains. Discrete and Continuous Dynamical Systems - B, 2016, 21 (9) : 3239-3267. doi: 10.3934/dcdsb.2016096 |
[3] |
Matheus C. Bortolan, José Manuel Uzal. Upper and weak-lower semicontinuity of pullback attractors to impulsive evolution processes. Discrete and Continuous Dynamical Systems - B, 2021, 26 (7) : 3667-3692. doi: 10.3934/dcdsb.2020252 |
[4] |
Bixiang Wang, Xiaoling Gao. Random attractors for wave equations on unbounded domains. Conference Publications, 2009, 2009 (Special) : 800-809. doi: 10.3934/proc.2009.2009.800 |
[5] |
Ming Wang, Yanbin Tang. Attractors in $H^2$ and $L^{2p-2}$ for reaction diffusion equations on unbounded domains. Communications on Pure and Applied Analysis, 2013, 12 (2) : 1111-1121. doi: 10.3934/cpaa.2013.12.1111 |
[6] |
Monica Conti, Vittorino Pata. On the regularity of global attractors. Discrete and Continuous Dynamical Systems, 2009, 25 (4) : 1209-1217. doi: 10.3934/dcds.2009.25.1209 |
[7] |
Yonghai Wang. On the upper semicontinuity of pullback attractors with applications to plate equations. Communications on Pure and Applied Analysis, 2010, 9 (6) : 1653-1673. doi: 10.3934/cpaa.2010.9.1653 |
[8] |
Bao Quoc Tang. Regularity of pullback random attractors for stochastic FitzHugh-Nagumo system on unbounded domains. Discrete and Continuous Dynamical Systems, 2015, 35 (1) : 441-466. doi: 10.3934/dcds.2015.35.441 |
[9] |
Zhijian Yang, Yanan Li. Upper semicontinuity of pullback attractors for non-autonomous Kirchhoff wave equations. Discrete and Continuous Dynamical Systems - B, 2019, 24 (9) : 4899-4912. doi: 10.3934/dcdsb.2019036 |
[10] |
Hong Lu, Jiangang Qi, Bixiang Wang, Mingji Zhang. Random attractors for non-autonomous fractional stochastic parabolic equations on unbounded domains. Discrete and Continuous Dynamical Systems, 2019, 39 (2) : 683-706. doi: 10.3934/dcds.2019028 |
[11] |
Shu Wang, Mengmeng Si, Rong Yang. Random attractors for non-autonomous stochastic Brinkman-Forchheimer equations on unbounded domains. Communications on Pure and Applied Analysis, 2022, 21 (5) : 1621-1636. doi: 10.3934/cpaa.2022034 |
[12] |
Dalibor Pražák, Jakub Slavík. Attractors and entropy bounds for a nonlinear RDEs with distributed delay in unbounded domains. Discrete and Continuous Dynamical Systems - B, 2016, 21 (4) : 1259-1277. doi: 10.3934/dcdsb.2016.21.1259 |
[13] |
Lin Yang, Yejuan Wang, Tomás Caraballo. Regularity of global attractors and exponential attractors for $ 2 $D quasi-geostrophic equations with fractional dissipation. Discrete and Continuous Dynamical Systems - B, 2022, 27 (3) : 1345-1377. doi: 10.3934/dcdsb.2021093 |
[14] |
T. F. Ma, M. L. Pelicer. Attractors for weakly damped beam equations with $p$-Laplacian. Conference Publications, 2013, 2013 (special) : 525-534. doi: 10.3934/proc.2013.2013.525 |
[15] |
Anhui Gu. Weak pullback mean random attractors for non-autonomous $ p $-Laplacian equations. Discrete and Continuous Dynamical Systems - B, 2021, 26 (7) : 3863-3878. doi: 10.3934/dcdsb.2020266 |
[16] |
Linfang Liu, Xianlong Fu. Existence and upper semicontinuity of (L2, Lq) pullback attractors for a stochastic p-laplacian equation. Communications on Pure and Applied Analysis, 2017, 6 (2) : 443-474. doi: 10.3934/cpaa.2017023 |
[17] |
María Anguiano, Tomás Caraballo, José Real, José Valero. Pullback attractors for reaction-diffusion equations in some unbounded domains with an $H^{-1}$-valued non-autonomous forcing term and without uniqueness of solutions. Discrete and Continuous Dynamical Systems - B, 2010, 14 (2) : 307-326. doi: 10.3934/dcdsb.2010.14.307 |
[18] |
Daniel Pardo, José Valero, Ángel Giménez. Global attractors for weak solutions of the three-dimensional Navier-Stokes equations with damping. Discrete and Continuous Dynamical Systems - B, 2019, 24 (8) : 3569-3590. doi: 10.3934/dcdsb.2018279 |
[19] |
John M. Ball. Global attractors for damped semilinear wave equations. Discrete and Continuous Dynamical Systems, 2004, 10 (1&2) : 31-52. doi: 10.3934/dcds.2004.10.31 |
[20] |
Mei-Qin Zhan. Global attractors for phase-lock equations in superconductivity. Discrete and Continuous Dynamical Systems - B, 2002, 2 (2) : 243-256. doi: 10.3934/dcdsb.2002.2.243 |
2021 Impact Factor: 1.865
Tools
Metrics
Other articles
by authors
[Back to Top]