December  2016, 9(6): 2031-2046. doi: 10.3934/dcdss.2016083

Second-order slip flow of a generalized Oldroyd-B fluid through porous medium

1. 

Gengdan Institute of Beijing University of Technology, Beijing 101301, China

2. 

School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China

Received  August 2015 Revised  September 2016 Published  November 2016

This work is concerned the flow of a generalized Oldroyd-B fluid in a porous half-space with second-order slip effect. The fractional calculus approach is used to establish the constitutive relationship of the non-Newtonian fluid model. A new motion model is firstly proposed by modifying the boundary condition with second-order slip effect. Exact solutions for velocity and shear stress are obtained in terms of Fox H-function by using the discrete inverse Laplace transform of the sequential fractional derivatives. The similar solutions for the generalized Oldroyd-B fluid with first-order slip or no slip, and the solutions for a generalized Oldroyd-B fluid in nonporous medium, are obtained as the limiting cases of our solutions. Furthermore, the behavior of various parameters on the corresponding flow characteristics is shown graphical through different diagrams.
Citation: Yaqing Liu, Liancun Zheng. Second-order slip flow of a generalized Oldroyd-B fluid through porous medium. Discrete and Continuous Dynamical Systems - S, 2016, 9 (6) : 2031-2046. doi: 10.3934/dcdss.2016083
References:
[1]

R. L. Bagley and P. T. Torvik, A theoretical basis for the application of fractional calculus to viscoelasticity, J. Rheol., 27(3) (1983), 201-210.

[2]

R. L. Bagley and P. T. Torvik, On the fractional calculus model of viscoelastic behavior, J. Rheol., 30 (1986), 133-155.

[3]

A. Beskok and G. E. Karniadakis, A model for flows in channels pipes, and ducts at micro and nano scales, Microscale Therm. Eng., 3 (1999), 43-77.

[4]

C. Fetecau, T. Hayat, C. Fetecau and N. Alia, Unsteady flow of a second grade fluid between two side walls perpendicular to a plate, Nonlinear Anal. RWA, 9 (2008), 1236-1252. doi: 10.1016/j.nonrwa.2007.02.014.

[5]

C. Fetecau, M. Nazar and C. Fetecau, Unsteady flow of an Oldroyd-B fluid generated by a constantly accelerating plate between two side walls perpendicular to the plate, Int. J. Non-Linear Mech., 44 (2009), 1039-1047. doi: 10.1016/j.ijnonlinmec.2009.08.008.

[6]

C. Fetecau, C. Fetecau, M. Kamranc and D. Vieru, Exact solutions for the flow of a generalized Oldroyd-B fluid induced by a constantly accelerating plate between two side walls perpendicular to the plate, J. Non-Newtonian Fluid Mech., 156 (2009), 189-201. doi: 10.1016/j.jnnfm.2008.06.005.

[7]

Chr. Friedrich, Relaxation and retardation functions of the Maxwell model with fractional derivatives, Rheol. Acta, 30 (1991), 151-158.

[8]

S. H. Han, L. C. Zheng and X. X. Zhang, Slip effects on a generalized Burgers' fluid flow between two side walls with fractional derivative, J. Egypt. Math. Soc., 24 (2016), 130-137. doi: 10.1016/j.joems.2014.10.004.

[9]

A. M. Mathai, R. K. Saxena and H. J. Haubold, The H-Function: Theory and Applications, Springer, New York, 2010. doi: 10.1007/978-1-4612-0873-0.

[10]

J. C. Maxwell, On stresses in rarefied gases arising from inequalities of temperature, Proc. R. Soc. Lond., 27 (1879), 304-308. doi: 10.1098/rspl.1878.0052.

[11]

M. Navier, Memoire sur les lois du movement des fluids, Mem. L'Acad. Sci. L'Inst. France, 6 (1823), 389-440.

[12]

I. Podlubny, Fractional Differential Equations, Academic Press, San Diego, 1999. doi: 10.1007/978-1-4612-0873-0.

[13]

H. T. Qi and M. Y. Xu, Stokes' first problem for a viscoelastic fluid with the generalized Oldroyd-B model, Acta Mech. Sin., 23 (2007), 463-469. doi: 10.1007/s10409-007-0093-2.

[14]

H. T. Qi and M. Y. Xu, Some unsteady unidirectional flows of a generalized Oldroyd-B fluid with fractional derivative, Appl. Math. Model., 33 (2009), 4184-4191. doi: 10.1016/j.apm.2009.03.002.

[15]

I. N. Sneddon, Fourier Transforms, McGraw-Hill Book Company, Inc., New York, Toronto, London, 1951. doi: 10.1007/978-1-4612-0873-0.

[16]

D. Y. Song and T. Q. Jiang, Study on the constitutive equation with fractional derivative for the viscoelastic fluids Modified Jeffreys model and its application, Rheol Acta, 27 (1998), 512-517.

[17]

W. C. Tan and T. Masuoka, Stokes' first problem for a second grade fluid in a porous half-space with heated boundary, Int. J. Non-Linear Mech., 40 (2005), 515-522.

[18]

W. C. Tan and T. Masuoka, Stokes' first problem for an Oldroyd-B fluid in a porous half-space, Phys. Fluid, 17 (2005), 023101, 7pp. doi: 10.1063/1.1850409.

[19]

W. C. Tan, Velocity over shoot of start-up flow for a Maxwell fluid in a porous half-space, Chin. Phys., 15 (2006), 2644-2650.

[20]

W. C. Tan and T. Masuoka, Exact solutions of the Rayleigh-Stokes problem for a heated generalized second grade fluid in a porous half-space, Appl. Math. Model, 33 (2009), 524-531. doi: 10.1016/j.apm.2007.11.015.

[21]

C. F. Xue and J. X. Nie, An exact solution of start-up flow for the fractional generalized Burgers' fluid in a porous half-space, Rheol Acta, 30 (1991), 151-158.

[22]

C. F. Xue, J. X. Nie and W. C. Tan, An exact solution of start-up flow for the fractional generalized Burgers' fluid in a porous half-space, Nonlinear Anal. RWA, 9 (2008), 1628-1637. doi: 10.1016/j.nonrwa.2007.04.007.

[23]

T. T. Zhang, L. Jia and Z. C. Wang, Validation of Navier-Stokes equations for slip flow analysis within transition region, Int. J. Heat Mass Transfer, 51 (2008), 6323-6327. doi: 10.1016/j.ijheatmasstransfer.2008.04.049.

[24]

T. T. Zhang, L. Jia, Z. C. Wang and X. Li, The application of homotopy analysis method for 2-dimensional steady slip flow in microchannels, Phys. Lett. A , 372 (2008), 3223-3227. doi: 10.1016/j.physleta.2008.01.077.

[25]

L. C. Zheng, X. X. Zhang and C. Q. Lu, Heat transfer of power law non-Newtonian, Chin. Phys. Lett., 23 (2006), 3301-3304.

[26]

L. C. Zheng, Y. Q. Liu and X. X. Zhang, Slip effects on MHD flow of a generalized Oldroyd-B fluid with fractional derivative, Nonlinear Anal. RWA, 13 (2012), 513-523. doi: 10.1016/j.nonrwa.2011.02.016.

[27]

J. Zhu, L. C. Zheng and Z. G. Zhang, The effect of the slip condition on the MHD stagnation-point over a power-law stretching sheet, Appl. Math. Mech., 31 (2010), 439-448. doi: 10.1007/s10483-010-0404-z.

show all references

References:
[1]

R. L. Bagley and P. T. Torvik, A theoretical basis for the application of fractional calculus to viscoelasticity, J. Rheol., 27(3) (1983), 201-210.

[2]

R. L. Bagley and P. T. Torvik, On the fractional calculus model of viscoelastic behavior, J. Rheol., 30 (1986), 133-155.

[3]

A. Beskok and G. E. Karniadakis, A model for flows in channels pipes, and ducts at micro and nano scales, Microscale Therm. Eng., 3 (1999), 43-77.

[4]

C. Fetecau, T. Hayat, C. Fetecau and N. Alia, Unsteady flow of a second grade fluid between two side walls perpendicular to a plate, Nonlinear Anal. RWA, 9 (2008), 1236-1252. doi: 10.1016/j.nonrwa.2007.02.014.

[5]

C. Fetecau, M. Nazar and C. Fetecau, Unsteady flow of an Oldroyd-B fluid generated by a constantly accelerating plate between two side walls perpendicular to the plate, Int. J. Non-Linear Mech., 44 (2009), 1039-1047. doi: 10.1016/j.ijnonlinmec.2009.08.008.

[6]

C. Fetecau, C. Fetecau, M. Kamranc and D. Vieru, Exact solutions for the flow of a generalized Oldroyd-B fluid induced by a constantly accelerating plate between two side walls perpendicular to the plate, J. Non-Newtonian Fluid Mech., 156 (2009), 189-201. doi: 10.1016/j.jnnfm.2008.06.005.

[7]

Chr. Friedrich, Relaxation and retardation functions of the Maxwell model with fractional derivatives, Rheol. Acta, 30 (1991), 151-158.

[8]

S. H. Han, L. C. Zheng and X. X. Zhang, Slip effects on a generalized Burgers' fluid flow between two side walls with fractional derivative, J. Egypt. Math. Soc., 24 (2016), 130-137. doi: 10.1016/j.joems.2014.10.004.

[9]

A. M. Mathai, R. K. Saxena and H. J. Haubold, The H-Function: Theory and Applications, Springer, New York, 2010. doi: 10.1007/978-1-4612-0873-0.

[10]

J. C. Maxwell, On stresses in rarefied gases arising from inequalities of temperature, Proc. R. Soc. Lond., 27 (1879), 304-308. doi: 10.1098/rspl.1878.0052.

[11]

M. Navier, Memoire sur les lois du movement des fluids, Mem. L'Acad. Sci. L'Inst. France, 6 (1823), 389-440.

[12]

I. Podlubny, Fractional Differential Equations, Academic Press, San Diego, 1999. doi: 10.1007/978-1-4612-0873-0.

[13]

H. T. Qi and M. Y. Xu, Stokes' first problem for a viscoelastic fluid with the generalized Oldroyd-B model, Acta Mech. Sin., 23 (2007), 463-469. doi: 10.1007/s10409-007-0093-2.

[14]

H. T. Qi and M. Y. Xu, Some unsteady unidirectional flows of a generalized Oldroyd-B fluid with fractional derivative, Appl. Math. Model., 33 (2009), 4184-4191. doi: 10.1016/j.apm.2009.03.002.

[15]

I. N. Sneddon, Fourier Transforms, McGraw-Hill Book Company, Inc., New York, Toronto, London, 1951. doi: 10.1007/978-1-4612-0873-0.

[16]

D. Y. Song and T. Q. Jiang, Study on the constitutive equation with fractional derivative for the viscoelastic fluids Modified Jeffreys model and its application, Rheol Acta, 27 (1998), 512-517.

[17]

W. C. Tan and T. Masuoka, Stokes' first problem for a second grade fluid in a porous half-space with heated boundary, Int. J. Non-Linear Mech., 40 (2005), 515-522.

[18]

W. C. Tan and T. Masuoka, Stokes' first problem for an Oldroyd-B fluid in a porous half-space, Phys. Fluid, 17 (2005), 023101, 7pp. doi: 10.1063/1.1850409.

[19]

W. C. Tan, Velocity over shoot of start-up flow for a Maxwell fluid in a porous half-space, Chin. Phys., 15 (2006), 2644-2650.

[20]

W. C. Tan and T. Masuoka, Exact solutions of the Rayleigh-Stokes problem for a heated generalized second grade fluid in a porous half-space, Appl. Math. Model, 33 (2009), 524-531. doi: 10.1016/j.apm.2007.11.015.

[21]

C. F. Xue and J. X. Nie, An exact solution of start-up flow for the fractional generalized Burgers' fluid in a porous half-space, Rheol Acta, 30 (1991), 151-158.

[22]

C. F. Xue, J. X. Nie and W. C. Tan, An exact solution of start-up flow for the fractional generalized Burgers' fluid in a porous half-space, Nonlinear Anal. RWA, 9 (2008), 1628-1637. doi: 10.1016/j.nonrwa.2007.04.007.

[23]

T. T. Zhang, L. Jia and Z. C. Wang, Validation of Navier-Stokes equations for slip flow analysis within transition region, Int. J. Heat Mass Transfer, 51 (2008), 6323-6327. doi: 10.1016/j.ijheatmasstransfer.2008.04.049.

[24]

T. T. Zhang, L. Jia, Z. C. Wang and X. Li, The application of homotopy analysis method for 2-dimensional steady slip flow in microchannels, Phys. Lett. A , 372 (2008), 3223-3227. doi: 10.1016/j.physleta.2008.01.077.

[25]

L. C. Zheng, X. X. Zhang and C. Q. Lu, Heat transfer of power law non-Newtonian, Chin. Phys. Lett., 23 (2006), 3301-3304.

[26]

L. C. Zheng, Y. Q. Liu and X. X. Zhang, Slip effects on MHD flow of a generalized Oldroyd-B fluid with fractional derivative, Nonlinear Anal. RWA, 13 (2012), 513-523. doi: 10.1016/j.nonrwa.2011.02.016.

[27]

J. Zhu, L. C. Zheng and Z. G. Zhang, The effect of the slip condition on the MHD stagnation-point over a power-law stretching sheet, Appl. Math. Mech., 31 (2010), 439-448. doi: 10.1007/s10483-010-0404-z.

[1]

Muhammad Bilal Riaz, Syed Tauseef Saeed. Comprehensive analysis of integer-order, Caputo-Fabrizio (CF) and Atangana-Baleanu (ABC) fractional time derivative for MHD Oldroyd-B fluid with slip effect and time dependent boundary condition. Discrete and Continuous Dynamical Systems - S, 2021, 14 (10) : 3719-3746. doi: 10.3934/dcdss.2020430

[2]

Ruizhao Zi. Global solution in critical spaces to the compressible Oldroyd-B model with non-small coupling parameter. Discrete and Continuous Dynamical Systems, 2017, 37 (12) : 6437-6470. doi: 10.3934/dcds.2017279

[3]

Matthias Hieber. Remarks on the theory of Oldroyd-B fluids in exterior domains. Discrete and Continuous Dynamical Systems - S, 2013, 6 (5) : 1307-1313. doi: 10.3934/dcdss.2013.6.1307

[4]

Evgenii S. Baranovskii. Steady flows of an Oldroyd fluid with threshold slip. Communications on Pure and Applied Analysis, 2019, 18 (2) : 735-750. doi: 10.3934/cpaa.2019036

[5]

María Anguiano, Francisco Javier Suárez-Grau. Newtonian fluid flow in a thin porous medium with non-homogeneous slip boundary conditions. Networks and Heterogeneous Media, 2019, 14 (2) : 289-316. doi: 10.3934/nhm.2019012

[6]

Yasir Ali, Arshad Alam Khan. Exact solution of magnetohydrodynamic slip flow and heat transfer over an oscillating and translating porous plate. Discrete and Continuous Dynamical Systems - S, 2018, 11 (4) : 595-606. doi: 10.3934/dcdss.2018034

[7]

Shuai Liu, Yuzhu Wang. Optimal time-decay rate of global classical solutions to the generalized compressible Oldroyd-B model. Evolution Equations and Control Theory, 2022, 11 (4) : 1201-1227. doi: 10.3934/eect.2021041

[8]

Jiapeng Huang, Chunhua Jin. Time periodic solution to a coupled chemotaxis-fluid model with porous medium diffusion. Discrete and Continuous Dynamical Systems, 2020, 40 (9) : 5415-5439. doi: 10.3934/dcds.2020233

[9]

Yingwen Guo, Yinnian He. Fully discrete finite element method based on second-order Crank-Nicolson/Adams-Bashforth scheme for the equations of motion of Oldroyd fluids of order one. Discrete and Continuous Dynamical Systems - B, 2015, 20 (8) : 2583-2609. doi: 10.3934/dcdsb.2015.20.2583

[10]

Zhiqiang Yang, Junzhi Cui, Qiang Ma. The second-order two-scale computation for integrated heat transfer problem with conduction, convection and radiation in periodic porous materials. Discrete and Continuous Dynamical Systems - B, 2014, 19 (3) : 827-848. doi: 10.3934/dcdsb.2014.19.827

[11]

Anna Marciniak-Czochra, Andro Mikelić. A nonlinear effective slip interface law for transport phenomena between a fracture flow and a porous medium. Discrete and Continuous Dynamical Systems - S, 2014, 7 (5) : 1065-1077. doi: 10.3934/dcdss.2014.7.1065

[12]

José F. Cariñena, Javier de Lucas Araujo. Superposition rules and second-order Riccati equations. Journal of Geometric Mechanics, 2011, 3 (1) : 1-22. doi: 10.3934/jgm.2011.3.1

[13]

Eugenii Shustin, Emilia Fridman, Leonid Fridman. Oscillations in a second-order discontinuous system with delay. Discrete and Continuous Dynamical Systems, 2003, 9 (2) : 339-358. doi: 10.3934/dcds.2003.9.339

[14]

Nguyen Thi Hoai. Asymptotic approximation to a solution of a singularly perturbed linear-quadratic optimal control problem with second-order linear ordinary differential equation of state variable. Numerical Algebra, Control and Optimization, 2021, 11 (4) : 495-512. doi: 10.3934/naco.2020040

[15]

Wen Wang, Dapeng Xie, Hui Zhou. Local Aronson-Bénilan gradient estimates and Harnack inequality for the porous medium equation along Ricci flow. Communications on Pure and Applied Analysis, 2018, 17 (5) : 1957-1974. doi: 10.3934/cpaa.2018093

[16]

Kashif Ali Abro, Ilyas Khan. MHD flow of fractional Newtonian fluid embedded in a porous medium via Atangana-Baleanu fractional derivatives. Discrete and Continuous Dynamical Systems - S, 2020, 13 (3) : 377-387. doi: 10.3934/dcdss.2020021

[17]

Edoardo Mainini. On the signed porous medium flow. Networks and Heterogeneous Media, 2012, 7 (3) : 525-541. doi: 10.3934/nhm.2012.7.525

[18]

Leonardo Colombo, David Martín de Diego. Second-order variational problems on Lie groupoids and optimal control applications. Discrete and Continuous Dynamical Systems, 2016, 36 (11) : 6023-6064. doi: 10.3934/dcds.2016064

[19]

Qiong Meng, X. H. Tang. Solutions of a second-order Hamiltonian system with periodic boundary conditions. Communications on Pure and Applied Analysis, 2010, 9 (4) : 1053-1067. doi: 10.3934/cpaa.2010.9.1053

[20]

Qilin Wang, Xiao-Bing Li, Guolin Yu. Second-order weak composed epiderivatives and applications to optimality conditions. Journal of Industrial and Management Optimization, 2013, 9 (2) : 455-470. doi: 10.3934/jimo.2013.9.455

2021 Impact Factor: 1.865

Metrics

  • PDF downloads (146)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]