\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

On the Cauchy problem of the modified Hunter-Saxton equation

Abstract Related Papers Cited by
  • This paper is concerned with the Cauchy problem of the modified Hunter-Saxton equation, which was proposed by by J. Hunter and R. Saxton [SIAM J. Appl. Math. 51(1991) 1498-1521]. Using the approximate solution method, the local well-posedness of the model equation is obtained in Sobolev spaces $H^{s}$ with $s > 3/2$, in the sense of Hadamard, and its data-to-solution map is continuous but not uniformly continuous. However, if a weaker $H^{r}$-topology is used then it is shown that the solution map becomes Hölder continuous in $H^{s}$.
    Mathematics Subject Classification: 35B30, 35Q53.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    W. Arendt and S. Bu, Operator-valued fourier multipliers on periodic Besov spaces and applica-tions, Proc. Edinb. Math. Soc., 47 (2004), 15-33.doi: 10.1017/S0013091502000378.

    [2]

    R. Beals, D. Sattinger and J. Szmigielski, Inverse scattering solutions of the Hunter-Saxton equations, Appl. Anal., 78 (2001), 255-269.doi: 10.1080/00036810108840938.

    [3]

    R. Beals, D. Sattinger and J. Szmigielski, Multi-peakons and a theorem of Stieltjes, Inverse Problems, 15 (1999), 1-4.doi: 10.1088/0266-5611/15/1/001.

    [4]

    A. Bressan and A. Constantin, Global solutions of the Hunter-Saxton equation, SIAM J. Math. Anal., 37 (2005), 996-1026.doi: 10.1137/050623036.

    [5]

    A. Bressan and A. Constantin, Global conservative solutions of the Camassa-Holm equation, Arch. Ration. Mech. Anal., 183 (2007), 215-239.doi: 10.1007/s00205-006-0010-z.

    [6]

    A. Bressan and A. Constantin, Global dissipative solutions of the Camassa-Holm equation, Anal. Appl., 5 (2007), 1-27.doi: 10.1142/S0219530507000857.

    [7]

    R. Camassa and D. Holm, An integrable shallow water equation with peaked solitons, Phys. Rev. Lett., 71 (1993), 1661-1664.doi: 10.1103/PhysRevLett.71.1661.

    [8]

    J. Chemin, Localization in fourier space and navier-stokes system. phase space analysis of partial differential equations, Proceedings, CRM series, Pisa, 1 (2004), 53-135.

    [9]

    R. Chen, Y. Liu and P. Zhang, The Hölder continuity of the solution map to the $b$-family equation in weak topology, Math. Ann., 357 (2013), 1245-1289.doi: 10.1007/s00208-013-0939-9.

    [10]

    O. Christov and S. Hakkaev, On the Cauchy problem for the periodic $b$-family of equations and of the non-uniform continuity of Degasperis-Procesi equation, J. Math. Anal. Appl., 360 (2009), 47-56.doi: 10.1016/j.jmaa.2009.06.035.

    [11]

    A. Constantin, Global existence of solutions and breaking waves for a shallow water equation: A geometric approach, Ann. Inst. Fourier (Grenoble), 50 (2000), 321-362.doi: 10.5802/aif.1757.

    [12]

    A. Constantin, On the inverse spectral problem for the Camassa-Holm equation, J. Funct. Anal., 155 (1998), 352-363.doi: 10.1006/jfan.1997.3231.

    [13]

    A. Constantin, On the scattering problem for the Camassa-Holm equation, Proc. R. Soc. Lond. A, 457 (2001), 953-970.doi: 10.1098/rspa.2000.0701.

    [14]

    A. Constantin, The trajectories of particles in Stokes waves, Invent. Math., 166 (2006), 523-535.doi: 10.1007/s00222-006-0002-5.

    [15]

    A. Constantin and J. Escher, Particle trajectores in solitary water waves, Bull. Amer. Math. Soc., 44 (2007), 423-431.doi: 10.1090/S0273-0979-07-01159-7.

    [16]

    A. Constantin and J. Escher, Wave breaking for nonlinear nonlocal shallow water equations, Acta Math., 181 (1998), 229-243.doi: 10.1007/BF02392586.

    [17]

    A. Constantin and J. Escher, Analyticity of periodic traveling free surface water waves with vorticity, Ann. of Math., 173 (2011), 559-568.doi: 10.4007/annals.2011.173.1.12.

    [18]

    A. Constantin, V. Gerdjikov and R. I. Ivanov, Inverse scattering transform for the Camassa-Holm equation, Inverse Problems, 22 (2006), 2197-2207.doi: 10.1088/0266-5611/22/6/017.

    [19]

    A. Constantin, T. Kappeler, B. Kolev and T. Topalov, On Geodesic exponential maps of the Virasoro group, Ann. Global Anal. Geom., 31 (2007), 155-180.doi: 10.1007/s10455-006-9042-8.

    [20]

    A. Constantin and D. Lannes, The hydro-dynamical relevance of the Camassa-Holm and Degasperis- Procesi equations, Arch. Ration. Mech. Anal., 192 (2009), 165-186.doi: 10.1007/s00205-008-0128-2.

    [21]

    A. Constantin and H. P. McKean, A shallow water equation on the circle, Comm. Pure Appl. Math., 52 (1999), 949-982.doi: 10.1002/(SICI)1097-0312(199908)52:8<949::AID-CPA3>3.0.CO;2-D.

    [22]

    A. Constantin and W. Strauss, Stability of peakons, Comm. Pure Appl. Math., 53 (2000), 603-610.doi: 10.1002/(SICI)1097-0312(200005)53:5<603::AID-CPA3>3.0.CO;2-L.

    [23]

    A. Constantin and W. Strauss, Stability of the Camassa-Holm solitons, J. Nonlinear Sci., 12 (2002), 415-422.doi: 10.1007/s00332-002-0517-x.

    [24]

    C. M. Dafermos, Continuous solutions for balance laws, Ricerche di Matematica, 55 (2006), 79-91.doi: 10.1007/s11587-006-0006-x.

    [25]

    R. Danchin, A few remarks on the Camassa-Holm equation, Differential Integral Equations, 14 (2001), 953-988.

    [26]

    R. Danchin, Fourier analysis methods for PDEs, Lecture Notes, 14 November, 2003.

    [27]

    R. Dachin, A note on well-posedness for Camassa-Holm equation, J. Differential Equations, 192 (2003), 429-444.doi: 10.1016/S0022-0396(03)00096-2.

    [28]

    M. Davidson, Continuity properties of the solution map for the generalized reduced Ostrovsky equation, J. Differential Equations, 252 (2012), 3797-3815.doi: 10.1016/j.jde.2011.11.013.

    [29]

    O. Glass, Controllability and asymptotic stabilization of the Camassa-Holm equation, J. Differential Equations, 245 (2008), 1584-1615.doi: 10.1016/j.jde.2008.06.016.

    [30]

    A. Fokas and B. Fuchssteiner, Symplectic structures, their Backlund transformation and hereditary symmetries, Physica D, 4 (1981), 47-66.doi: 10.1016/0167-2789(81)90004-X.

    [31]

    Y. Fu, G. Gu, Y. Liu and Z. Qu, On the Cauchy problemfor the integrable Camassa-Holm type equation with cubic nonlinearity, arXiv:1108.5368v2, 1-27.

    [32]

    G. Gui and Y. Liu, On the global existence and wave-breaking criteria for the two-component Camassa-Holm system, J. Funct. Anal., 258 (2010), 4251-4278.doi: 10.1016/j.jfa.2010.02.008.

    [33]

    G. Gui and Y. Liu, On the Cauchy problem for the two-component Camassa-Holm system, Math. Z., 268 (2011), 45-66.doi: 10.1007/s00209-009-0660-2.

    [34]

    K. Grayshan, Continuity properties of the data-to-solution map for the periodic $b$-family equation, Differential Integral Equations, 25 (2012), 1-20.

    [35]

    A. Himonas and C. Holliman, Hölder continuity of the solution map for the Novikov equation, J. Math Phy., 54 (2013), 061501, 11pp.doi: 10.1063/1.4807729.

    [36]

    A. Himonas and C. Holliman, The Cauchy problem for a generalized Camassa-Holm equation, Adv. Differential Equations, 19 (2014), 161-200.

    [37]

    A. Himonas and C. Holliman, On well-posedness of the Degasperis-Procesi equation, Discrete Contin. Dyn. Syst., 31 (2011), 469-488.doi: 10.3934/dcds.2011.31.469.

    [38]

    A. Himonas and C. Holliman, The Cauchy problem for the Novikov equation, Nonlinearity, 25 (2012), 449-479.doi: 10.1088/0951-7715/25/2/449.

    [39]

    A. Himonas and C. Kenig, Non-uniform dependence on initial data for the CH equation on the line, Differential Integral Equations, 22 (2009), 201-224.

    [40]

    A. Himonas, C. Kenig and G. Misiołek, Non-uniform dependence for the periodic CH equation, Comm. Partial Differential Equations, 35 (2010), 1145-1162.doi: 10.1080/03605300903436746.

    [41]

    A. Himonas and D. Mantzavinos, The Cauchy problem for the Fokas-Olver-Rosenau-Qiao equation, Nonlinear Anal., 95 (2014), 499-529.doi: 10.1016/j.na.2013.09.028.

    [42]

    A. Himonas, G. Misiołek and G. Ponce, Non-uniform continuity in $H^{1}$ of the solution map of the CH equation, Asian J. Math., 11 (2007), 141-150.doi: 10.4310/AJM.2007.v11.n1.a13.

    [43]

    A. Himonas and G. Misiołek, Non-uniform dependence on initial data of solutions to the Euler equations of hydrodynamics, Commun. Math. Phys., 296 (2009), 285-301.doi: 10.1007/s00220-010-0991-1.

    [44]

    A. Himonas and G. Misiołek, High-frequency smooth solutions and well-posedness of the Camassa-Holm equation, Int. Math. Res. Not., 51 (2005), 3135-3151.doi: 10.1155/IMRN.2005.3135.

    [45]

    H. Holden and X. Raynaud, Global conservative solutions of the Camassa-Holm equations-a Lagrangianpoiny of view, Comm. Partial Differential Equations, 32 (2007), 1511-1549.doi: 10.1080/03605300601088674.

    [46]

    H. Holden and X. Raynaud, Dissipative solutions for the Camassa-Holm equation, Discrete Contin. Dyn. Syst., 24 (2009), 1047-1112.doi: 10.3934/dcds.2009.24.1047.

    [47]

    C. Holliman, Non-uniform dependence and well-posedness for the periodic Hunter-Saxton equation, Diff. Int. Eq., 23 (2010), 1150-1194.

    [48]

    J. Hunter and R. Saxton, Dynamics of director fields, SIAM J. Appl. Math., 51 (1991), 1498-1521.doi: 10.1137/0151075.

    [49]

    J. Hunter and Y. Zheng, On a completely integrable nonlinear hyperbolic variational equation, Phys. D., 79 (1994), 361-386.doi: 10.1016/S0167-2789(05)80015-6.

    [50]

    J. Hunter and Y. Zheng, On a nonlinear hyperbolic variational equation: I, Global existence of weak solutions, Arch. Rat. Mech. Anal., 129 (1995), 305-353.doi: 10.1007/BF00379259.

    [51]

    J. Hunter and Y. Zheng, On a nonlinear hyperbolic variational equation: II, The zero-viscosity and dispersion limits, Arch. Rath. Mech. Anal., 129 (1995), 355-383.doi: 10.1007/BF00379260.

    [52]

    T. Kato, Quasi-linear equations of evolution with application to partial differential equations, in: Spectral Theory and Differential Equations, Springer, Berlin, 448 (1975), 25-70.

    [53]

    T. Kato and G. Ponce, Commutator estimates and the Euler and Navier-Stokes equations, Comm. Pure Appl. Math., 41 (1988), 891-907.doi: 10.1002/cpa.3160410704.

    [54]

    M. Kohlmann, On initial boundary value problems for variants of the Hunter-Saxton eqution, arXiv:1103.4221v2, (2011).

    [55]

    J. Lenells, The Hunter-Saxton equation describes the geodesic flow on a sphere, J. Geom. Phys., 57 (2007), 2049-2064.doi: 10.1016/j.geomphys.2007.05.003.

    [56]

    J. Lenells, The Hunter-Saxton equation: A geometric approach, SIAM J. Math. Anal., 40 (2008), 266-277.doi: 10.1137/050647451.

    [57]

    Y. S. Mi and C. L. Mu, Well-posedness for the Cauchy problem of the modified Hunter-Saxton equation in the Besov spaces, Math. Methods Appl. Sci., 38 (2015), 4061-4074.doi: 10.1002/mma.3346.

    [58]

    G. A. Misiolek, Shallow water equation as a geodesic flow on the Bott-Virasoro group, J. Geom. Phys., 24 (1998), 203-208.doi: 10.1016/S0393-0440(97)00010-7.

    [59]

    P. Olver and P. Rosenau, Tri-Hamiltonian duality between solitons and solitary wave solutions having compact support, Phys. Rev. E, 53 (1996), 1900-1906.doi: 10.1103/PhysRevE.53.1900.

    [60]

    H. J. Schmeisser and H. Triebel, Topics in Fourier analysis and function spaces, A Wiley-Interscience Publication, John Wiley & Sons, Ltd., Chichester, 1987.

    [61]

    M. Taylor, Pseudodifferential Operators and Nonlinear PDE, Birkhäuser, Boston, 1991.doi: 10.1007/978-1-4612-0431-2.

    [62]

    M. TaylorPartial Differential Equations. Nonlinear Equations, Springer III, Berlin ,1996.

    [63]

    F. Tiǧlay, The periodic Cauchy problem of the modified Hunter-Saxton equation, J. Evol. Equ., 5 (2005), 509-527.doi: 10.1007/s00028-005-0215-x.

    [64]

    M. Wunsch, On the Hunter-Saxton system, Discret Contin. Dyn. Syst. Ser. B, 12 (2009), 647-656.doi: 10.3934/dcdsb.2009.12.647.

    [65]

    Z. Yin, On the structure of solutions to the periodic Hunter-Saxton equation, SIAM J. Math. Anal., 36 (2004), 272-283.doi: 10.1137/S0036141003425672.

    [66]

    P. Zhang and Y. Zheng, On oscillations of an asymptotic equation of a nonlinear variational wave equation, Asymptot. Anal., 18 (1998), 307-327.

    [67]

    P. Zhang and Y. Zheng, On the existence and uniqueness of solutions to an asymptotic equation of a nonlinear variational wave equation, Acta Math. Sinica, 15 (1999), 115-130.doi: 10.1007/s10114-999-0063-7.

    [68]

    P. Zhang and Y. Zheng, Existence and uniqueness of solutions to an asymptotic equation from a variational wave equation with general data, Arch. Rat. Mech. Anal., 155 (2000), 49-83.doi: 10.1007/s205-000-8002-2.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(269) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return